1.Modification of C20 oxidase in tanshinone biosynthesis pathway.
Xiao-Qing CAO ; Xiao-Hui MA ; Ya-Tian CHENG ; Qi-Shuang LI ; Jun-Ling BU ; Ying MA ; Juan GUO
China Journal of Chinese Materia Medica 2023;48(9):2298-2306
Tanshinones are one of the main effective components of Salvia miltiorrhiza, which play important roles in the treatment of cardiovascular diseases. Microbial heterogony production of tanshinones can provide a large number of raw materials for the production of traditional Chinese medicine(TCM) preparations containing S. miltiorrhiza, reduce the extraction cost, and relieve the pressure of clinical medication. The biosynthetic pathway of tanshinones contains multiple P450 enzymes, and the catalytic element with high efficiency is the basis of microbial production of tanshinones. In this study, the protein modification of CYP76AK1, a key P450-C20 hydroxylase in tanshinone pathway, was researched. The protein modeling methods SWISS-MODEL, Robetta, and AlphaFold2 were used, and the protein model was analyzed to obtain the reliable protein structure. The semi-rational design of mutant protein was carried out by molecular docking and homologous alignment. The key amino acid sites affecting the oxidation activity of CYP76AK1 were identified by molecular docking. The function of the obtained mutations was studied with yeast expression system, and the CYP76AK1 mutations with continuous oxidation function to 11-hydroxysugiol were obtained. Four key amino acid sites that affected the oxidation acti-vity were analyzed, and the reliability of three protein modeling methods was analyzed according to the mutation results. The effective protein modification sites of CYP76AK1 were reported for the first time in this study, which provides a catalytic element for different oxidation activities at C20 site for the study of the synthetic biology of tanshinones and lays a foundation for the analysis of the conti-nuous oxidation mechanism of P450-C20 modification.
Oxidoreductases
;
Biosynthetic Pathways
;
Molecular Docking Simulation
;
Reproducibility of Results
;
Salvia miltiorrhiza/chemistry*
;
Amino Acids/metabolism*
;
Plant Roots/genetics*
2.Advances in the mechanism of plant adaptation to acid aluminum stress.
Xiaoxia DENG ; Yueming LI ; Kunshu YAO ; Jingwen QIAO ; Jinghong WANG ; Jixiang LIN
Chinese Journal of Biotechnology 2022;38(8):2754-2766
The aluminum stress in acidic soil areas of China is an important abiotic stress factor that hampers the normal growth and development of plants and seriously affects the agricultural yield. The forms of plant resistance to aluminum stress are complex and diverse, which include secretion of organic acids, increase of rhizosphere pH, secretion of mucus, cell wall fixation of Al3+, organic acid chelation of Al3+ in cell solute, and vacuolar area isolation. Most of studies focus on analyzing conventional physiological characteristics, but in-depth molecular biological analyses are lacking. This review summarizes the mechanisms how plants adapt to acidic aluminum stress. This includes the effect of acid aluminum stress on plant growth and physiological metabolism, the two main physiological mechanisms of plant adaptation to acid aluminum stress (aluminum exclusion mechanism, aluminum tolerance mechanism), and the aluminum resistance related genes. Finally, this paper puts forward some prospects for further revealing the mechanism of plant adaptation to acid aluminum stress and excavating high-quality crops suitable for cultivation in acidic soils.
Acids
;
Adaptation, Physiological
;
Aluminum
;
Crops, Agricultural/genetics*
;
Gene Expression Regulation, Plant
;
Plant Roots
;
Soil/chemistry*
3.Genome-wide identification of BvHAK gene family in sugar beet (Beta vulgaris) and their expression analysis under salt treatments.
Xiaohan YANG ; Guoqiang WU ; Ming WEI ; Beichen WANG
Chinese Journal of Biotechnology 2022;38(10):3773-3789
High-affinity K+ transporter (HAK) is one of the most important K+ transporter families in plants and plays an important role in plant K+ uptake and transport. To explore the biological functions and gene expression patterns of the HAK gene family members in sugar beet (Beta vulgaris), physicochemical properties, the gene structure, chromosomal location, phylogenetic evolution, conserved motifs, three-dimensional structure, interaction network, cis-acting elements of promoter of BvHAKs were predicted by bioinformatic analysis, and their expression levels in different tissues of sugar beet under salt stress were analyzed by qRT-PCR. A total of 10 BvHAK genes were identified in the sugar beet genome. They contained 8-10 exons and 7-9 introns. The average number of amino acids was 778.30, the average molecular weight was 88.31 kDa, and the isoelectric point was 5.38-9.41. The BvHAK proteins contained 11-14 transmembrane regions. BvHAK4, -5, -7 and -13 were localized on plasma membrane, while others were localized on tonoplast. Phylogenetic analysis showed that HAK in higher plants can be divided into five clusters, namely cluster Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ, among which the members of cluster Ⅱ can be divided into three subclusters, including Ⅱa, Ⅱb, and Ⅱc. The BvHAK gene family members were distributed in cluster Ⅰ-Ⅳ with 1, 6, 1, and 2 members, respectively. The promoter of BvHAK gene family mainly contained stress responsive elements, hormone responsive elements, and growth and development responsive elements. The expression pattern of the BvHAK genes were further analyzed in different tissues of sugar beet upon salt treatment, and found that 50 and 100 mmol/L NaCl significantly induced the expression of the BvHAK genes in both shoots and roots. High salt (150 mmol/L) treatment clearly down-regulated their expression levels in shoots, but not in roots. These results suggested that the BvHAK gene family plays important roles in the response of sugar beet to salt stress.
Beta vulgaris/genetics*
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Plant Roots
;
Sugars/metabolism*
;
Plant Proteins/metabolism*
4.Aconitum heterophyllum Wall. ex Royle: A critically endangered medicinal herb with rich potential for use in medicine.
Tareq A WANI ; Zahoor A KALOO ; Nisar A DANGROO
Journal of Integrative Medicine 2022;20(2):104-113
Aconitum heterophyllum (Patrees) is a critically endangered medicinal herb of the northwestern Himalayas and has enormous pharmacological potential. It is the only nonpoisonous member of the genus Aconitum, and has been used as a medicinal herb since ancient times. A. heterophyllum is an important ingredient in many traditional systems of medicine. Mostly, it is harvested for its roots, and its medicinal properties are due to the presence of diverse bioactive secondary metabolites, commonly known as aconites. Our understanding of the pharmacological properties of this intriguing genus is continuously growing due to its broad chemical diversity. The therapeutic uses identified by traditional medicinal practice are receiving extensive study. Multiple in vitro experimental investigations of A. heterophyllum have reported the analgesic, anti-inflammatory, antiarrhythmic, antiparasitic and anticancer properties, as well as its effects on the central nervous system. In this review, we highlight the classification, distribution, commerce, traditional uses, phytochemistry, pharmacology and conservation measures relevant to this species. Additionally, this review includes the biosynthetic pathways of A. heterophyllum's key constituents, which could be targeted to enhance the expression levels of desired metabolites via genetic interventions. Studying the genomics, transcriptomics, proteomics and metabolomic aspects of this species would be helpful in developing highly designed genotypes and chemotypes of this species to be used in commercial production.
Aconitum/genetics*
;
Ethnopharmacology
;
Plant Extracts/chemistry*
;
Plant Roots/chemistry*
;
Plants, Medicinal/chemistry*
5.Diversity of arbuscular mycorrhizal fungi of Panax quinquefolius cultivated in Shandong province.
Zhi-Fang RAN ; Xiao-Tong YANG ; Rui LI ; Jie ZHOU ; Yong-Qing ZHANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(16):4103-4110
In this study, the colonization, diversity and relative abundance of arbuscular mycorrhizal fungi(AMF) in the roots of Panax quinquefolius in different habitats of Shandong province were analyzed by staining-microscopy and high-throughput sequencing. The data were analyzed by bioinformatics tools and statistical software. The results showed that the roots of P. quinquefolius in different habitats were colonized by AMF with different rates and intensities. The AMF in roots of P. quinquefolius belong to three genera, three families, three orders, one class and one phylum. At the level of order, the AMF mainly included Paraglomerales(52.48%), Glomerales(25.60%) and Archaeosporales(3.08%). At the level of family, the AMF were dominated by Paraglomeraceae(52.48%), Glomeraceae(18.94%) and Claroideoglomeraceae(3.05%). At the level of genus, Paraglomus(51.46%), Glomus(20.01%) and Claroideoglomus(3.52%) accounted for a large proportion, of which Paraglomus and Glomus were dominant. Cluster analysis showed that the AMF in roots of P. quinquefolius with close geographical locations could be clustered together. In this study, the diversity and dominant germplasm resources of AMF in roots of P. quinquefolius cultivated in the main producing areas were identified, which provi-ded basic data for revealing the quality formation mechanism of P. quinquefolius medicinal materials from the perspective of environment.
Fungi
;
Glomeromycota
;
Humans
;
Mycorrhizae/genetics*
;
Panax
;
Plant Roots
;
Soil Microbiology
6.Effects of density on growth and gene transcription characteristics of Rehmannia glutinosa.
Feng-Qing WANG ; Chao-Fei YANG ; Ming-Ming LI ; Xin ZUO ; Xu YANG ; Xin-Rong LI ; Li GU ; Jia-Fang DU ; Ming-Jie LI ; Hao WANG ; Zhong-Yi ZHANG
China Journal of Chinese Materia Medica 2021;46(17):4367-4379
The present study analyzed the effects of planting density on the development, quality, and gene transcription characte-ristics of Rehmannia glutinosa using 85-5 and J9 as materials with three planting densities of 5 000, 25 000, and 50 000 plants/Mu(1 Mu≈667 m~2). The agronomic characteristics of leaves and tuberous roots, the content of catalpol and acteoside, and the changes of gene expression were determined. The results showed that the leaf size, the diameter of tuberous root, leaf biomass, tuberous root number, and tuberous root biomass per plant at low density were significantly higher than those of medium and high densities. The content of catalpol and acteoside in leaves was higher at high density. The content of catalpol in tuberous roots was higher at low density, and the change trend was similar to that in leaves, while the content of acteoside in tuberous roots was higher at high density. Transcriptome analysis found that about 1/2 of the expansin genes could change regularly in response to density treatment, which was rela-ted to the development of tuberous roots. The change trend of the gene expression of multiple catalytic enzymes involved in the biosynthesis of catalpol and acteoside was consistent with that of their content, which was presumedly involved in the accumulation and regulation of density-responsive medicinal components. Based on the analysis of the development, medicinal components, and gene expression characteristics of R. glutinosa at different densities, this study is expected to provide an important basis for regulating the quality and yield of medicinal materials of R. glutinosa by managing the planting density.
Gene Expression Profiling
;
Plant Leaves/genetics*
;
Plant Roots/genetics*
;
Rehmannia/genetics*
;
Transcription, Genetic
7.Transcriptome analysis of Platycodon grandiflorum at different growth years and discovery of key genes for platycodin biosynthesis.
Jian ZHANG ; Yuan PAN ; Yu WANG ; Da-Xia CHEN
China Journal of Chinese Materia Medica 2021;46(6):1386-1392
Platycodon grandiflorum is a medicinal and edible medicinal material. Our study is aimed to explore the differences in the gene expression of P. grandiflorum in different growth years, and the expression rules of key genes in the biosynthesis of the main active substances of P. grandiflorum. Illumina Hiseq 4000 sequencing platform was used to sequence the transcriptome of P. grandiflorum in different years. Then, 59 654 unigenes were obtained through filtering, assembly, splicing and bioinformatics analysis of the sequencing data, of which 1 671 unigenes were differentially expressed between at least two samples. The results of cluster analysis showed that there was a great difference in the gene expression of P. grandiflorum from one-year-old to two/three-year-old. There were 1 128 different genes between one-and three-year old P. grandiflorum, and only 57 different genes between two-and three-year-old P. grandiflorum. KEGG enrichment results showed that the differential genes of P. grandiflorum in different years were mainly concentra-ted in the biosynthesis of sesquiterpenes and triterpenes, and the biosynthesis of terpenoid skeletons. In the triterpenoid biosynthesis-related pathways, a total of 15 unigenes were identified, involving 5 enzymes. The expression levels of ACAT, HMGR, FDFT1, SQLE decreased with the increase of the growth year of P. grandiflorum. The expression of HMGS was the highest in the one-year-old P. grandiflorum, followed by the three-year-old sample. This study provides useful data for the development of P. grandiflorum, and also provides a basis for the study of related genes in the biosynthetic pathway of platycodin.
Gene Expression Profiling
;
Plant Roots
;
Platycodon/genetics*
;
Saponins
;
Transcriptome
;
Triterpenes
8.Pueraria lobate advances in molecular pharmacognosy.
Bi-Sui YANG ; Qiu-Lian HUANG ; Lu-Xin XIE ; Bo WU ; Ke-Zhong DENG ; Zhi-Gui WU ; Wei-Feng ZHU ; Shao-Lang HE ; Qi HUANG ; Yu-Ye ZHU ; Fei GE
China Journal of Chinese Materia Medica 2021;46(9):2149-2157
Molecular pharmacognosy is a science of classification and identification, cultivation and protection, and production of active ingredients of graduated drugs at the molecular level. The proposal of molecular pharmacognosy allows the research of crude drugs to advance from the microscopic level to the genetic level. Pueraria lobata root, as a medicinal and edible plant, has high application value and economic value. There are many varieties that are easy to cause confusion, and it is not easy to distinguish and identify according to traditional identification methods. Moreover, the research of P. lobate root at the genetic level is still relatively shallow. the study received extensive attention of scholars. This article reviews recent research on molecular identification of P. lobate, transcriptome sequencing, cloning and synthesis of functional genes of P. lobate root in recent years in order to provide references for further promoting the development and utilization of P. lobate root and its active ingredients.
Pharmacognosy
;
Plant Roots/genetics*
;
Pueraria
9.Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria.
Xue SUN ; Yonghua DONG ; Na WANG ; Wenhui CUI ; Xianyan LIAO ; Li LIU
Chinese Journal of Biotechnology 2020;36(7):1356-1364
Salinity is the most important factor for the growth of crops. It is an effective method to alleviate the toxic effect caused by salt stress using saline-alkali-tolerant and growth-promoting bacteria in agriculture. Seven salt-tolerant bacteria were screened from saline-alkali soil, and the abilities of EPS production, alkalinity reduction and IAA production of the selected strains were investigated. A dominant strain DB01 was evaluated. The abilities of EPS production, alkalinity reduction and IAA production of strain DB01 were 0.21 g/g, 8.7% and 8.97 mg/L, respectively. The isolate was identified as Halomonas aquamarina by partial sequencing analysis of its 16S rRNA genes, and had the ability to inhibit the growth of Fusarium oxysporum f. sp., Alternaria solani, Phytophthora sojae and Rhizoctonia cerealis. It also could promote root length and germination rate of wheat seedlings under salt stress. Halomonas aquamarina can provide theoretical basis for the development of soil microbial resources and the application in saline-alkali soil improvement.
Alkalies
;
metabolism
;
Bacteria
;
drug effects
;
genetics
;
Halomonas
;
genetics
;
Plant Roots
;
microbiology
;
RNA, Ribosomal, 16S
;
genetics
;
Salt Tolerance
;
genetics
;
Seedlings
;
growth & development
;
microbiology
;
Soil
;
chemistry
;
Soil Microbiology
;
Triticum
;
microbiology
10.Construction and function of a root-specific promoter SRSP.
Wenwen CUI ; Jing CHI ; Yanfang FENG ; Lili GENG ; Rongmei LIU
Chinese Journal of Biotechnology 2020;36(4):700-706
The responsibility of root is absorbing water and nutrients, it is an important plant tissue, but easily to be affected by biotic and abiotic stresses, affecting crop growth and yield. The design of a synthetic root-specific promoter provides candidate promoters for the functional analysis and efficient expression of stress-related genes in crop roots. In this study, a synthetic root-specific module (pro-SRS) was designed using tandem four-copies of root specific cis-acting elements (OSE1ROOTNODULE, OSE2ROOTNODULE, SP8BFIBSP8AIB, and ROOTMOTIFAPOX1), and fused with minimal promoter from the CaMV 35S promoter to synthesize an artificially synthetic SRSP promoter. The SRSP promoter was cloned in pCAMBIA2300.1 by replacing CaMV 35S promoter so as to drive GUS expression. The constructs with SRSP promoter were transformed in tobacco by Agrobacterium-mediated method. SRSP promoter conferred root-specific expression in transgenic tobacco plants through Real-time PCR (RT-PCR) analysis and GUS histochemical staining analysis. It is indicated that the repeated arrangement of cis-acting elements can realize the expected function of the promoter. This study laid a theoretical foundation for the rational design of tissue-specific promoters.
Agrobacterium
;
genetics
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
Plant Roots
;
genetics
;
Plants, Genetically Modified
;
Promoter Regions, Genetic
;
genetics
;
Stress, Physiological
;
Tobacco
;
genetics
;
growth & development
;
Transformation, Genetic

Result Analysis
Print
Save
E-mail