1.Differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting in Shandong, China.
Yue WANG ; Xin-Ying MAO ; Yu DING ; Hong-Xia YU ; Zhi-Fang RAN ; Xiao-Li CHEN ; Jie ZHOU
China Journal of Chinese Materia Medica 2025;50(6):1524-1533
In order to compare the differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting, growth indexes, photosynthetic characteristics, soil enzyme activities, secondary metabolite contents, and antioxidant activities of P. quinquefolius under different planting modes were examined and compared, and One-way analysis of variance(ANOVA) and correlation analyses were carried out by using the software SPSS 25.0 and GraphPad Prism 9.5. The Origin 2021 software was used for plotting. The results showed that compared with those under field planting, the plant height, leaf length, leaf width, photosynthetic rate, and chlorophyll content of P. quinquefolius under understory planting were significantly reduced, and arbuscular mycorrhizal fungi(AMF) infestation rate and infestation intensity, ginsenoside content, and antioxidant activity were significantly increased. The activities of inter-root soil urease, sucrase, and catalase increased, while the activities of non-inter-root soil urease and alkaline phosphatase increased. Correlation analyses showed that the plant height and leaf length of P. quinquefolius plant were significantly positively correlated with net photosynthetic rate, transpiration rate, chlorophyll content, and electron transfer rate(P<0.05), while ginsenoside content was significantly negatively correlated with net photosynthetic rate, chlorophyll content, and electron transfer rate(P<0.05) and significantly positively correlated with AMF infestation rate and infestation intensity(P<0.05). In addition, ginsenoside content was significantly positively correlated with the activities of inter-root soil sucrase, urease, and catalase(P<0.05). This study provides basic data for revealing the mechanism of secondary metabolite accumulation in P. quinquefolius under understory planting and for exploring and practicing the ecological mode of P. quinquefolius under understory planting.
Panax/microbiology*
;
China
;
Secondary Metabolism
;
Soil/chemistry*
;
Photosynthesis
;
Plant Leaves/metabolism*
;
Chlorophyll/metabolism*
;
Mycorrhizae
2.Transcriptome analysis and catechin synthesis genes in different organs of Spatholobus suberectus.
Wei-Qi QIN ; Quan LIN ; Ying LIANG ; Fan WEI ; Gui-Li WEI ; Qi GAO ; Shuang-Shuang QIN
China Journal of Chinese Materia Medica 2025;50(12):3297-3306
To study the differences in transcript levels among different organs of Spatholobus suberectus and to explore the genes encoding enzymes related to the catechin biosynthesis pathway, this study utilized the genome and full-length transcriptome data of S. suberectus as references. Transcriptome sequencing and bioinformatics analysis were performed on five different organs of S. suberectus-roots, stems, leaves, flowers, and fruits-using the Illumina NovaSeq 6000 platform. A total of 115.28 Gb of clean data were obtained, with GC content values ranging from 45.19% to 47.54%, Q20 bases at 94.17% and above, and an overall comparison rate with the reference genome around 90%. In comparisons between the stem and root, stem and leaf, stem and flower, and stem and fruit, 10 666, 9 674, 9 320, and 5 896 differentially expressed genes(DEGs) were identified, respectively. The lowest number of DEGs was found in the stem and root comparison group. KEGG enrichment analysis revealed that the DEGs were mainly concentrated in the pathways of phytohormone signaling, phenylalanine biosynthesis, etc. A total of 39 genes were annotated in the catechin biosynthesis pathway, with at least one highly expressed gene found in all organs. Among these, PAL1, PAL2, C4H1, C4H3, 4CL1, 4CL2, and DFR2 showed high expression in the stems, suggesting that they may play important roles in the biosynthesis of flavonoids in S. suberectus. This study aims to provide important information for the in-depth exploration of the regulation of catechin biosynthesis in S. suberectus through transcriptome analysis of its different organs and to provide a reference for the further realization of S. suberectus varietal improvement and molecular breeding.
Catechin/biosynthesis*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Fabaceae/metabolism*
;
Transcriptome
;
Flowers/metabolism*
;
Plant Stems/metabolism*
;
Plant Leaves/metabolism*
;
Plant Roots/metabolism*
;
Fruit/metabolism*
3.Ten new lignans with anti-inflammatory activities from the leaves of Illicium dunnianum.
Ting LI ; Xiaoqing HE ; Dabo PAN ; Xiaochun ZENG ; Siying ZENG ; Zhenzhong WANG ; Xinsheng YAO ; Wei XIAO ; Haibo LI ; Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):990-996
The anti-inflammatory phytochemical investigation of the leaves of Illicium dunnianum (I. dunnianum) resulted in the isolation of five pairs of new lignans (1-5), and 7 known analogs (6-12). The separation of enantiomer mixtures 1-5 to 1a/1b-5a/5b was achieved using a chiral column with acetonitrile-water mixtures as eluents. The planar structures of 1-2 were previously undescribed, and the chiral separation and absolute configurations of 3-5 were reported for the first time. Their structures were determined through comprehensive spectroscopic data analysis [nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass (HR-ESI-MS), infrared (IR), and ultraviolet (UV)] and quantum chemistry calculations (ECD). The new isolates were evaluated by measuring their inhibitory effect on NO in lipopolysaccharide (LPS)-stimulated BV-2 cells. Compounds 1a, 3a, 3b, and 5a demonstrated partial inhibition of NO production in a concentration-dependent manner. Western blot and real-time polymerase chain reaction (PCR) assays revealed that 1a down-regulated the messenger ribonucleic acid (mRNA) levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), COX-2, and iNOS and the protein expressions of COX-2 and iNOS. This research provides guidance and evidence for the further development and utilization of I. dunnianum.
Lignans/isolation & purification*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Molecular Structure
;
Plant Extracts/pharmacology*
;
Illicium/chemistry*
;
Cyclooxygenase 2/immunology*
;
Interleukin-6/immunology*
;
Nitric Oxide/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Lipopolysaccharides
4.Effect of heterologous expression of Scenedesmus quadricauda malic enzyme gene SqME on photosynthetic carbon fixation and lipid accumulation in tobacco leaves.
Yizhen LIU ; Mengyuan LI ; Zhanqian LI ; Yushuang GUO ; Jingfang JI ; Wenchao DENG ; Ze YANG ; Yan SUN ; Chunhui ZHANG ; Jin'ai XUE ; Runzhi LI ; Chunli JI
Chinese Journal of Biotechnology 2025;41(7):2829-2842
Microalgae possess high photosynthetic efficiency, robust adaptability, and substantial biomass, serving as excellent biological resources for large-scale cultivation. Malic enzyme (ME), a ubiquitous metabolic enzyme in living organisms, catalyzes the decarboxylation of malate to produce pyruvate, CO2, and NAD(P)H, playing a role in multiple metabolic pathways including energy metabolism, photosynthesis, respiration, and biosynthesis. In this study, we identified the Scenedesmus quadricauda malic enzyme gene (SqME) and its biological functions, aiming to provide excellent target genes for the genetic improvement of higher plants. Based on the RNA-seq data from S. quadricauda under the biofilm cultivation mode with high CO2 and light energy transfer efficiency and small water use, a highly expressed gene (SqME) functionally annotated as ME was cloned. The physicochemical properties of the SqME-encoded protein were systematically analyzed by bioinformatics tools. The subcellular localization of SqME was determined via transient transformation in Nicotiana benthamiana leaves. The biological functions of SqME were identified via genetic transformation in Nicotiana tabacum, and the potential of SqME in the genetic improvement of higher plants was evaluated. The ORF of SqME was 1 770 bp, encoding 590 amino acid residues, and the encoded protein was located in chloroplasts. SqME was a NADP-ME, with the typical structural characteristics of ME. The ME activity in the transgenic N. tabacum plant was 1.8 folds of that in the wild-type control. Heterologous expression of SqME increased the content of chlorophyll a, chlorophyll b, and total chlorophyll by 20.9%, 26.9%, and 25.2%, respectively, compared with the control. The transgenic tobacco leaves showed an increase of 54.0% in the fluorescence parameter NPQ and a decrease of 30.1% in Fo compared with the control. Moreover, the biomass, total lipids, and soluble sugars in the transgenic tobacco leaves enhanced by 20.5%, 25.7%, and 9.5%, respectively. On the contrary, the starch and protein content in the transgenic tobacco leaves decreased by 22.4% and 12.2%, respectively. Collectively, the SqME-encoded protein exhibited a strong enzymatic activity. Heterologous expressing of SqME could significantly enhance photosynthetic protection, photosynthesis, and biomass accumulation in the host. Additionally, SqME can facilitate carbon metabolism remodeling in the host, driving more carbon flux towards lipid synthesis. Therefore, SqME can be applied in the genetic improvement of higher plants for enhancing photosynthetic carbon fixation and lipid accumulation. These findings provide scientific references for mining of functional genes from S. quadricauda and application of these genes in the genetic engineering of higher plants.
Nicotiana/genetics*
;
Photosynthesis/physiology*
;
Malate Dehydrogenase/biosynthesis*
;
Plant Leaves/genetics*
;
Scenedesmus/enzymology*
;
Carbon Cycle/genetics*
;
Lipid Metabolism/genetics*
;
Plants, Genetically Modified/metabolism*
5.Map-based cloning and abiotic stress response analysis of rust spotted leaf 1 in rice.
Jun LIU ; Xiaoyan LIU ; Yiyun GE ; Yiting WEI ; Kangjie LING ; Luyao TANG ; Jiangmin XU ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2871-2884
Rice (Oryza sativa L.) is an important food crop. The appearance of lesion mimics in rice leads to phytohormone disorders, which affects rice adaptation to environmental stresses and ultimately reduces the yield and quality. To explore whether the changes in the adaptability of rice lesion-mimic mutants to stressful environments are caused by the disorder of phytohormone metabolism in plants. In this study, we screened an ethyl methane sulfonate-treated population of the japonica cultivar 'Taipei 309' for a mutant with rust-like spots on leaves at the early tillering stage and brown-red spots at maturity and named it rsl1 (rust spotted leaf 1). Compared with the wild type, rsl1 showed decreases in plant height, panicle length, primary branch number, secondary branch number, filled grains per panicle, seed-setting rate, and 1 000-grain weight, and an increase in number of effective panicles. Genetic analysis indicated that rsl1 was controlled by a single recessive nuclear gene. RSL1 was localized between two molecular markers, B7-7 and B7-9, on rice chromosome 7 by map-based cloning. PCR sequencing of the annotated genes in this interval revealed a mutation of C1683A on the eighth exon of SPL5 (LOC_Os07g10390) in rsl1, which resulted in premature termination of protein translation. Exogenous phytohormone treatments showed that rsl1 was less sensitive to salicylic acid (SA), abscisic acid (ABA), and indo-3-acetic acid (IAA) and more sensitive to methyl jasmonate (MeJA) and gibberellin acid (GA) than the wild type. In addition, the survival rate of rsl1 was lower than that of the wild type under salt, alkali, drought, and high temperature stresses, and it was higher than that of the wild type under cold stress. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that RSL1 was involved in the regulation of ABA, SA, MeJA, IAA, and GA-related genes under abiotic stresses. The present study showed that the RSL1 mutation led to the appearance of lesion mimics and affected the growth, development, and stress resistance of rsl1 under abiotic stresses. The study of the functional mechanism of this gene can provide theoretical guidance for the research on rice stress resistance.
Oryza/microbiology*
;
Stress, Physiological/genetics*
;
Plant Diseases/genetics*
;
Cloning, Molecular
;
Chromosome Mapping
;
Plant Growth Regulators/metabolism*
;
Plant Proteins/genetics*
;
Mutation
;
Cyclopentanes
;
Genes, Plant
;
Plant Leaves/genetics*
;
Oxylipins
6.Genomic information mining reveals Rehmannia glutinosa growth-promoting mechanism of endophytic bacterium Kocuria rosea.
Lin-Lin WANG ; Gui-Xiao LA ; Xiu-Hong SU ; Lin-Lin YANG ; Lei-Xia CHU ; Jun-Qi GUO ; Cong-Long LIAN ; Bao ZHANG ; Cheng-Ming DONG ; Sui-Qing CHEN ; Chun-Yan WANG
China Journal of Chinese Materia Medica 2024;49(22):6119-6128
This study explored the growth-promoting effect and mechanism of the endophytic bacterium Kocuria rosea on Rehmannia glutinosa, aiming to provide a scientific basis for the development of green bacterial fertilizer. R. glutinosa 'Jinjiu' was treated with K. rosea, and the shoot parameters including leaf length, leaf width, plant width, and stem diameter were measured every 15 days. After 120 days, the shoots and roots were harvested. The root indicators(root number, root length, root diameter, root fresh weight, root dry weight, root volume, and root vitality) and secondary metabolites(catalpol, rehmannioside A, rehmannioside D, verbascoside, and leonuride) were determined. The R. glutinosa growth-promoting mechanism of K. rosea was discussed from the effect of K. rosea on the nutrient element content in R. glutinosa and rhizosphere soil and the genome information of this plant. After application of K. rosea, the maximum increases in leaf length, leaf width, plant width, and stem diameter were 35.67%(60 d), 25.39%(45 d), 40.17%(60 d), and 113.85%(45 d), respectively. The root number, root length, root diameter, root volume, root fresh weight, root dry weight, and root viability increased by 41.71%, 45.10%, 48.61%, 94.34%, 101.55%, 147.61%, and 42.08%, respectively. In addition, the content of rehmannioside A and verbascoside in the root of R. glutinosa increased by 76.67% and 69.54%, respectively. K. rosea promoted the transformation of nitrogen(N), phosphorus(P), and potassium(K) in the rhizosphere soil into the available state. Compared with that in the control, the content of available N(54.60 mg·kg~(-1)), available P(1.83 μmol·g~(-1)), and available K(83.75 mg·kg~(-1)) in the treatment with K. rosea increased by 138.78%, 44.89%, and 14.34%, respectively. The content of N, P, and K in the treatment group increased by 293.22%, 202.63%, and 23.80% in the roots and by 23.60%, 107.23%, and 134.53% in the leaves of R. glutinosa, respectively. K. rosea carried the genes related to colonization(rbsB, efp, bcsA, and gmhC), N, P, and K metabolism(narG, narH, narI, nasA, nasB, GDH2, pyk, aceB, ackA, CS, ppa, ppk, ppk2, pstS, pstA, pstB, and pstC), and indole-3-acetic acid and zeatin synthesis(iaaH and miaA). Further studies showed that K. rosea could colonize the roots of R. glutinosa and secrete indole-3-acetic acid(3.85 μg·mL~(-1)) and zeatin(0.10 μg·mL~(-1)). In summary, K. rosea promotes the growth of R.ehmannia glutinosa by enhancing the nutrient uptake, which provides a theoretical basis for the development of plant growth-promoting microbial products.
Rehmannia/metabolism*
;
Endophytes/metabolism*
;
Plant Roots/growth & development*
;
Micrococcaceae/genetics*
;
Data Mining
;
Plant Leaves/metabolism*
;
Genomics
;
Rhizosphere
7.Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway.
Long CHENG ; Lu SHI ; Changhao HE ; Chen WANG ; Yinglan LV ; Huimin LI ; Yongcheng AN ; Yuhui DUAN ; Hongyu DAI ; Huilin ZHANG ; Yan HUANG ; Wanxin FU ; Weiguang SUN ; Baosheng ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):812-829
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Mice
;
Animals
;
Adipose Tissue, Brown
;
Sirtuin 1/pharmacology*
;
Diabetes Mellitus, Type 2/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Morus/metabolism*
;
Flavonoids/metabolism*
;
Prospective Studies
;
Signal Transduction
;
Adipose Tissue, White
;
Plant Leaves
;
Uncoupling Protein 1/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*
8.Effect of sowing dates on physiological characteristics, yield, and quality of Carthamus tinctorius.
Bin MA ; Ming LI ; Yang-Mei BAO ; Hua LIU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2023;48(18):4967-4973
A field experiment was conducted to measure the physiological characteristics, yield, active ingredient content, and other indicators of Carthamus tinctorius leaves undergoing 13 sowing date treatments. The principal component analysis(PCA) and redundancy analysis were used to analyze the correlation between these indicators to explore the effect of sowing date on the yield and active ingredient content of C. tinctorius in Liupanshan of Ningxia. The results illustrated that the early sowing in autumn and spring had significant effects on leaf photosynthetic parameters, SPAD value, antioxidant enzyme activity, nitrogen metabolism enzyme activity, filament yield, grain yield, and hydroxy safflower yellow A(HYSA) of C. tinctorius. Sowing in mid-November and late March had the best effect. Leaf transpiration rate, stomatal conductance, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase increased by 44.9%, 52.4%, 15.9%, 60.8%, 10.3%, and 38.3%, respectively. The activities of superoxide dismutase, peroxidase, and catalase decreased by 10.8%, 4.1%, and 20.9%, respectively. The improvement of photosynthetic physiological characteristics promoted the dry matter accumulation and reproductive growth of C. tinctorius. The yield of filaments and seeds increased by 15.5% and 11.7%, and the yield of HYSA and kaempferol increased by 17.9% and 20.0%. In short, the suitable sowing date can promote the growth and development of C. tinctorius in Liupanshan of Ningxia, and significantly improve the yield and quality, which is conducive to the high quality and efficient production of C. tinctorius.
Carthamus tinctorius
;
Seeds
;
Peroxidase/metabolism*
;
Plant Leaves/metabolism*
;
Antioxidants
9.Assay of amino acids in leaves of Eucommia ulmoides under arbor forest mode and leaf-oriented cultivation mode by pre-column derivatization HPLC.
Qian-Feng WU ; Meng-Yuan SHEN ; Fu WANG ; Hong-Ping CHEN ; Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2023;48(7):1824-1832
This study aims to develop the pre-column derivatization high performance liquid chromatography(HPLC) method for the determination of 16 kinds of amino acids in Eucommia ulmoides leaves, and compare the content of amino acids in the leaves harvested at different time and under leaf-oriented cultivation mode(LCM) and arbor forest mode(AFM). The HPLC conditions are as below: phenyl isothiocyanate(PITC) as pre-column derivatization agent, Agilent ZORBAX C_(18 )column(4.6 mm×250 mm, 5 μm), mobile phase A of acetonitrile-water(80∶20), mobile phase B of 0.1 mol·L~(-1) sodium acetate solution-acetonitrile(94∶6), gradient elution, flow rate of 1.0 mL·min~(-1), injection volume of 5 μL, column temperature of 40 ℃, and detection wavelength of 254 nm. The HPLC profile indicated well separation of 16 kinds of amino acids and the amino acid content in E. ulmoides leaves was up to 16.26%. In addition, the amino acid content in leaves of E. ulmoides under LCM was higher than under AFM. The amino acid content varied with the harvesting time. Through orthogonal partial least squares discriminant analysis, the amino acids of E. ulmoides under LCM and AFM were compared, which can distinguish the leaves under LCM from those under AFM. Principal component analysis was applied to comprehensively score the amino acids of E. ulmoides leaves. The results showed that the score of leaves under LCM was higher than that under AFM. Nutritional evaluation results indicated that the proteins in E. ulmoides leaves belonged to high-quality vegetable proteins. The established method for the determination of amino acid content is reliable. With the amino acid content as index, the leaf quality of E. ulmoides under LCM is better than that under AFM. This study lays a theoretical basis for the promotion of LCM for E. ulmoides and the development of medicinal and edible products from E. ulmoides leaves.
Amino Acids/metabolism*
;
Eucommiaceae/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Plant Leaves/chemistry*
10.Cloning and expression analysis of JrGI gene in walnut.
Xing YUAN ; Jinming LIU ; Caihua GUO ; Chao KANG ; Zhongrong ZHANG ; Shaowen QUAN ; Jianxin NIU
Chinese Journal of Biotechnology 2023;39(2):640-652
GI (GIGANTEA) is one of the output key genes for circadian clock in the plant. The JrGI gene was cloned and its expression in different tissues was analyzed to facilitate the functional research of JrGI. RT-PCR (reverse transcription-polymerase chain reaction) was used to clone JrGI gene in present study. This gene was then analyzed by bioinformatics, subcellular localization and gene expression. The coding sequence (CDS) full length of JrGI gene was 3 516 bp, encoding 1 171 amino acids with a molecular mass of 128.60 kDa and a theoretical isoelectric point of 6.13. It was a hydrophilic protein. Phylogenetic analysis showed that JrGI of 'Xinxin 2' was highly homologous to GI of Populus euphratica. The result of subcellular localization showed that JrGI protein was located in nucleus. The JrGI, JrCO and JrFT genes in female flower buds undifferentiated and early differentiated of 'Xinxin 2' were analyzed by RT-qPCR (real-time quantitative PCR). The results showed that the expression of JrGI, JrCO and JrFT genes were the highest on morphological differentiation, implying the temporal and special regulation of JrGI in the differential process of female flower buds of'Xinxin 2'. In addition, RT-qPCR analysis showed that JrGI gene was expressed in all tissues examined, whereas the expression level in leaves was the highest. It is suggested that JrGI gene plays a key role in the development of walnut leaves.
Juglans/genetics*
;
Phylogeny
;
Plant Leaves
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*

Result Analysis
Print
Save
E-mail