1.Map-based cloning and abiotic stress response analysis of rust spotted leaf 1 in rice.
Jun LIU ; Xiaoyan LIU ; Yiyun GE ; Yiting WEI ; Kangjie LING ; Luyao TANG ; Jiangmin XU ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2871-2884
Rice (Oryza sativa L.) is an important food crop. The appearance of lesion mimics in rice leads to phytohormone disorders, which affects rice adaptation to environmental stresses and ultimately reduces the yield and quality. To explore whether the changes in the adaptability of rice lesion-mimic mutants to stressful environments are caused by the disorder of phytohormone metabolism in plants. In this study, we screened an ethyl methane sulfonate-treated population of the japonica cultivar 'Taipei 309' for a mutant with rust-like spots on leaves at the early tillering stage and brown-red spots at maturity and named it rsl1 (rust spotted leaf 1). Compared with the wild type, rsl1 showed decreases in plant height, panicle length, primary branch number, secondary branch number, filled grains per panicle, seed-setting rate, and 1 000-grain weight, and an increase in number of effective panicles. Genetic analysis indicated that rsl1 was controlled by a single recessive nuclear gene. RSL1 was localized between two molecular markers, B7-7 and B7-9, on rice chromosome 7 by map-based cloning. PCR sequencing of the annotated genes in this interval revealed a mutation of C1683A on the eighth exon of SPL5 (LOC_Os07g10390) in rsl1, which resulted in premature termination of protein translation. Exogenous phytohormone treatments showed that rsl1 was less sensitive to salicylic acid (SA), abscisic acid (ABA), and indo-3-acetic acid (IAA) and more sensitive to methyl jasmonate (MeJA) and gibberellin acid (GA) than the wild type. In addition, the survival rate of rsl1 was lower than that of the wild type under salt, alkali, drought, and high temperature stresses, and it was higher than that of the wild type under cold stress. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that RSL1 was involved in the regulation of ABA, SA, MeJA, IAA, and GA-related genes under abiotic stresses. The present study showed that the RSL1 mutation led to the appearance of lesion mimics and affected the growth, development, and stress resistance of rsl1 under abiotic stresses. The study of the functional mechanism of this gene can provide theoretical guidance for the research on rice stress resistance.
Oryza/microbiology*
;
Stress, Physiological/genetics*
;
Plant Diseases/genetics*
;
Cloning, Molecular
;
Chromosome Mapping
;
Plant Growth Regulators/metabolism*
;
Plant Proteins/genetics*
;
Mutation
;
Cyclopentanes
;
Genes, Plant
;
Plant Leaves/genetics*
;
Oxylipins
2.A high-throughput plant canopy leaf area index inversion model based on UAV-LiDAR.
Yuming LIANG ; Xueyan FAN ; Muqing ZHANG ; Wei YAO ; Xiuhua LI ; Zeping WANG ; Sifan DONG ; Xuechen LI
Chinese Journal of Biotechnology 2025;41(10):3817-3827
To explore the feasibility of using UAV-LiDAR for measuring the leaf area index (LAI) of crop canopies, we employed UAV-LiDAR to scan sugarcane canopies during the tillering and elongation stages, acquiring canopy point cloud data. Subsequently, features such as average row height, projected row area, point cloud density at different canopy layers, and the ratios between these parameters were extracted. Three feature selection methods-partial least squares regression (PLSR), XGBoost feature importance (XGBoost-FI), and random forest-recursive feature elimination (RF-RFE)-were adopted to evaluate and identify the optimal input variables for modeling. With these selected variables, LAI inversion models were developed based on random forest (RF) and adaptive boosting (AdaBoost) algorithms, and their performance was assessed. Among the extracted features, the projected row area Sp and the total row point count Ctotal exhibited strong correlations with LAI, with correlation coefficients of 0.73 and 0.72, respectively. The AdaBoost-based LAI inversion model, using the projected row area Sp, average height Havg, mid-layer point cloud density Cm, and total row point count Ctotal as input variables, achieved the best performance, with a coefficient of determination (Rv²) of 0.713 and a root mean square error (RMSEv) of 0.25 on the validation set. This study provides an effective method for high-throughput acquisition of LAI in field crops, offering valuable scientific support for sugarcane field management and breeding efforts.
Plant Leaves/growth & development*
;
Saccharum/growth & development*
;
Algorithms
;
Unmanned Aerial Devices
;
Remote Sensing Technology/methods*
;
Crops, Agricultural/growth & development*
3.Genomic information mining reveals Rehmannia glutinosa growth-promoting mechanism of endophytic bacterium Kocuria rosea.
Lin-Lin WANG ; Gui-Xiao LA ; Xiu-Hong SU ; Lin-Lin YANG ; Lei-Xia CHU ; Jun-Qi GUO ; Cong-Long LIAN ; Bao ZHANG ; Cheng-Ming DONG ; Sui-Qing CHEN ; Chun-Yan WANG
China Journal of Chinese Materia Medica 2024;49(22):6119-6128
This study explored the growth-promoting effect and mechanism of the endophytic bacterium Kocuria rosea on Rehmannia glutinosa, aiming to provide a scientific basis for the development of green bacterial fertilizer. R. glutinosa 'Jinjiu' was treated with K. rosea, and the shoot parameters including leaf length, leaf width, plant width, and stem diameter were measured every 15 days. After 120 days, the shoots and roots were harvested. The root indicators(root number, root length, root diameter, root fresh weight, root dry weight, root volume, and root vitality) and secondary metabolites(catalpol, rehmannioside A, rehmannioside D, verbascoside, and leonuride) were determined. The R. glutinosa growth-promoting mechanism of K. rosea was discussed from the effect of K. rosea on the nutrient element content in R. glutinosa and rhizosphere soil and the genome information of this plant. After application of K. rosea, the maximum increases in leaf length, leaf width, plant width, and stem diameter were 35.67%(60 d), 25.39%(45 d), 40.17%(60 d), and 113.85%(45 d), respectively. The root number, root length, root diameter, root volume, root fresh weight, root dry weight, and root viability increased by 41.71%, 45.10%, 48.61%, 94.34%, 101.55%, 147.61%, and 42.08%, respectively. In addition, the content of rehmannioside A and verbascoside in the root of R. glutinosa increased by 76.67% and 69.54%, respectively. K. rosea promoted the transformation of nitrogen(N), phosphorus(P), and potassium(K) in the rhizosphere soil into the available state. Compared with that in the control, the content of available N(54.60 mg·kg~(-1)), available P(1.83 μmol·g~(-1)), and available K(83.75 mg·kg~(-1)) in the treatment with K. rosea increased by 138.78%, 44.89%, and 14.34%, respectively. The content of N, P, and K in the treatment group increased by 293.22%, 202.63%, and 23.80% in the roots and by 23.60%, 107.23%, and 134.53% in the leaves of R. glutinosa, respectively. K. rosea carried the genes related to colonization(rbsB, efp, bcsA, and gmhC), N, P, and K metabolism(narG, narH, narI, nasA, nasB, GDH2, pyk, aceB, ackA, CS, ppa, ppk, ppk2, pstS, pstA, pstB, and pstC), and indole-3-acetic acid and zeatin synthesis(iaaH and miaA). Further studies showed that K. rosea could colonize the roots of R. glutinosa and secrete indole-3-acetic acid(3.85 μg·mL~(-1)) and zeatin(0.10 μg·mL~(-1)). In summary, K. rosea promotes the growth of R.ehmannia glutinosa by enhancing the nutrient uptake, which provides a theoretical basis for the development of plant growth-promoting microbial products.
Rehmannia/metabolism*
;
Endophytes/metabolism*
;
Plant Roots/growth & development*
;
Micrococcaceae/genetics*
;
Data Mining
;
Plant Leaves/metabolism*
;
Genomics
;
Rhizosphere
4.Effects of planting density on yield and quality of Chrysanthemum morifolium.
Yang XU ; Yin LIU ; Lan-Ping GUO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2020;45(1):59-64
In this paper, five field density treatments were set up in the field plot experiment, which were 2 500,3 000,5 000,6 660,8 000 plants/mu(1 mu≈667 m~2). The agronomic traits, economic traits, mineral element absorption and the content of effective components of Chrysanthemum morifolium under different densities were studied. The results showed that dense planting could significantly reduce the number of secondary branches of Ch. morifolium and the yield per plant, but significantly increase the population yield of Ch. morifolium. The yield of Ch. morifolium was the highest when the density was 8 000 plants/mu, but the effect of increasing yield would gradually decrease with the increase of planting density. With the increase of planting density, the N, P and Mg elements in flowers firstly increased and then decreased. The N element content in leaves increased gradually, which showed that increasing the planting density within a certain range could increase the absorption of N, P and Mg elements in flowers and leaves of Ch. morifolium. The contents of rutin, chlorogenic acid and 3,5-O-dicaffeoyl quinic acid in Ch. morifolium showed a trend of first increasing and then decreasing with the increase of planting density. When the planting density was 5 500,5 000,3 750 plants/mu, the content of chlorogenic acid, rutin and 3,5-O-dicaffeyl quinic acid had the maximum value. The content of luteolin in Ch. morifolium decreased gradually with the increase of planting density. When the planting density was 7 143 plants/mu, the content of luteolin was the minimum. Considering factors such as yield and active ingredient content, the cultivation density of 5 000 plants/mu(row spacing 40 cm×30 cm) can be selected for standard planting of Ch. morifolium.
Chrysanthemum/growth & development*
;
Flowers/chemistry*
;
Phytochemicals/analysis*
;
Plant Leaves/chemistry*
5.Study on tissue culture system of Polygonatum cyrtonema.
Yan HE ; Yu-Qiu ZHU ; Bo XIAO ; Shun-Hua FU ; Jin-Ping SI
China Journal of Chinese Materia Medica 2019;44(10):2032-2037
In order to accelerate the breeding of the excellent seedlings of Polygonatum cyrtonema,tissue culture system of P. cyrtonema was established through the comprehensive regulation of key factors( leaf age,leaf location,basic media and plant growth regulators) and cytological basis of callus formation and differentiation was analyzed through paraffin section. The results showed that the 30-day-old leaf base explanton medium MS+6-BA 1. 50 mg·L~(-1)+2,4-D 0. 20 mg·L~(-1) had the highest induction rate( 80. 00%). The callus was initiated from cells on leaf base epidermis and near cortex,formed by the differentiation of middle vascular bundle cells. The optimal medium for adventitious bud differentiation was MS+ 6-BA 4. 00 mg·L~(-1)+ 2,4-D 0. 20 mg·L~(-1) with the differentiation rate of90. 33%,and the average number of buds was 5. 16. The adventitious buds had two origin types: exogenous and endogenous origin,formed by callus proximal cells and callus internal meristemoid. The adventitious bud proliferation medium was screened by orthogonal design,which determined the optimum combination was MS+ 6-BA 2. 00 mg·L~(-1)+NAA 0. 10 mg·L~(-1) and MS+ 6-BA 2. 00 mg·L~(-1)+NAA 0. 20 mg·L~(-1). The tubers with three leaves were cut and inoculated in the medium 1/2 MS+IBA 2. 00 mg·L~(-1),showing the highest rooting rate of 94. 00%. The rooting seedlings transplanted into the peat-vermiculite( 1 ∶ 1) matrix grew healthy and the survival rate was over 85. 00%. This research provided a novel solution for large-scale cultivation of P. cyrtonema seedling.
Culture Media
;
Plant Growth Regulators
;
Plant Leaves
;
cytology
;
Polygonatum
;
growth & development
;
Regeneration
;
Seedlings
;
growth & development
;
Tissue Culture Techniques
6.Response of growth and photosynthetic characteristics of Polygonatum cyrtonema to shading conditions.
Yong-Fu LIANG ; Jia-Ning YI ; Kang-Cai WANG ; Qi XUE ; Li SUI
China Journal of Chinese Materia Medica 2019;44(1):59-67
The purpose of this experiment was to study the effects of different shading conditions on the growth,physiological characteristics and biomass allocation of Polygonatum cyrtonema,which offered a theoretical basis for its cultivation.Different light environments(100%,80%,60% and 35% light transmittance) were simulated with shading treatments.Growth and photosynthetic indexes of P.cyrtonema were measured and the variances were analyzed.The results show that shading decreased superoxide anion radical(O-·2)production rate and hydrogen peroxide(H_2O_2) accumulation,kept the activity of SOD,POD and CAT enzyme at a high level.Furthermore,The content of chlorophyll a and chlorophyll b,net photosynthetic rate(Pn),stomatal conductance(Gs),transpiration rate(Tr),maximal photochemical efficiency of photosystem Ⅱ(Fv/Fm),photochemical quenching index(q P) and effective quantum yield of photosystem II(ΦPSⅡ) of P.cyrtonema were increased while the intercellular CO2 concentration(Ci),Foand NPQ were decreased by shading.Shading is beneficial to P.cyrtonema growth,can increase the total biomass P.cyrtonema.The allocation proportion of biomass on the aerial portion of P.cyrtonema increased but underground parts decreased with increasing shading conditions.In this study,P.cyrtonema can grow well in shading conditions,shading is beneficial to the formation of the yield and quality of the rhizomes of P.cyrtonema,especially in 65% light transmittance.
Biomass
;
Chlorophyll
;
Chlorophyll A
;
Photosynthesis
;
Plant Leaves
;
Plant Stomata
;
Plant Transpiration
;
Polygonatum
;
growth & development
;
physiology
;
Sunlight
7.Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.
Shohini CHAKRABORTY ; Nashra AFAQ ; Neelam SINGH ; Sukanta MAJUMDAR
Journal of Integrative Medicine 2018;16(5):350-357
OBJECTIVEThis study examined the antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava against methicillin-resistant Staphylococcus aureus (MRSA) and used a standardized purification protocol to determine the presence and abundance of bioactive compounds in the leaf extracts.
METHODSIn vitro antimicrobial activities of the ethanolic extracts of C. sativa, T. orientalis and P. guajava were tested against MRSA. The presence of bioactive molecules in these three leaves was evaluated using biochemical assays and high-performance thin-layer chromatography (HPTLC).
RESULTSResistance to methicillin, penicillin, oxacillin and cefoxitin was observed in each of the clinical and nonclinical MRSA isolates. However, they were still vulnerable to vancomycin. Used individually, the 50% extract of each plant leaf inhibited MRSA growth. A profound synergism was observed when C. sativa was used in combination with T. orientalis (1:1) and when P. guajava was used in combination with T. orientalis (1:1). This was shown by larger zones of inhibition. This synergism was probably due to the combined inhibitory effect of phenolics present in the leaf extracts (i.e., quercetin and gallic acid) and catechin, as detected by HPTLC.
CONCLUSIONThe leaf extracts of C. sativa, T. orientalis and P. guajava had potential for the control of both hospital- and community-acquired MRSA. Moreover, the inhibitory effect was enhanced when extracts were used in combination.
Anti-Bacterial Agents ; pharmacology ; Cannabis ; Drug Resistance ; drug effects ; Humans ; Methicillin ; pharmacology ; Methicillin-Resistant Staphylococcus aureus ; drug effects ; growth & development ; Microbial Sensitivity Tests ; Phytotherapy ; Plant Extracts ; pharmacology ; Plant Leaves ; Psidium ; Staphylococcal Infections ; drug therapy ; microbiology ; Thuja
8.Research for dynamic changes of growth and alkaloids of Coptis chinensis.
Yu WANG ; Long-Yun LI ; Jun TAN ; Da-Xia CHEN ; Xu-Hong SONG
China Journal of Chinese Materia Medica 2018;43(20):4027-4032
With Coptis chinensis in high-yielding soil as the object,the growth regularity of plant and dynamic change of alkaloid content was studied. The plant growth model of C. chinensis was constructed. The plant height equation was =3.030 9+0.732 6-0.009 6²,the number of leaves equation was =111.882 6-2 234.881 7/+15 218.960 8/²-31 740.960 8/³,the leaf area equation was =-217.136 1+30.552 2-0.359 0²,the roots talk biomass equation was =-2.748 8+0.210 3+0.006 4²,the number of rootstalk equation was =-1.246 0+0.192 6+0.000 8²,the fibrous root biomass equation was =-4.973 5+0.589 4 -0.002 6². The results indicated that the number of leaves and leaf area were increasing continuously after seedling transplanting,the leaf area of 3-year-old C. chinensis reached a maximum value of 425.83 cm²/plant,after declining.The number of leave of 5-year-old C. chinensis reached a maximum value of 70.91. With the increasing of years of growth, the number of rootstalk and rootstalk biomass of C. chinensis was increasing continuously. The biomass growth of 3-year-old and 4-year-old rootstalk was the fastest in the whole development stage of C. chinensis,the annual increase of more than 300%. The change curve of rootstalk number, rootstalk biomass and fibrous root biomass in the whole growth stage was a s-type.The dry matter partition of leafwas the highest in 1-year-old C. chinensis, and then gradually decreased,the change trend of dry matter partition of rootstalk was just the opposite, the dry matter partition of fibrous root increases with the increase of the growing year, reaching the maximum value in 3-year-old, then gradually lower trend. The root-shootratio of 1-year-old C. chinensis was the smallest, then gradually increases, the growth center gradually shifted to the roots from stems and leaves, The weight of underground part of 3-year-old C. chinensis exceeded the aboveground part, the 5-year-old C. chinensis root-shoot ratio reached the maximum value of 1.91:1.With the increasing of years of growth, the contents of coptisine, berberine, epiberberine and palmatine in rootstalk was increasing continuously. The jatrorrhizine content in 2-year-old C. chinensis was significantly lower than that in other years, the content was no significant change after that. The columbamine content reached a maximum value in 3-year-old C. chinensis,then the decreased gradually. The content of magnoflorine gradually increased and reached maximum value in 5-year-old C. chinensis.
Alkaloids
;
analysis
;
Biomass
;
Coptis
;
chemistry
;
growth & development
;
Phytochemicals
;
analysis
;
Plant Leaves
;
growth & development
;
Plant Roots
;
growth & development
9.Dynamic changes of flavonoids in Actinidia valvata leaves at different growing stages measured by HPLC-MS/MS.
Qiao-Hui DU ; Qiao-Yan ZHANG ; Ting HAN ; Yi-Ping JIANG ; Cheng PENG ; Hai-Liang XIN
Chinese Journal of Natural Medicines (English Ed.) 2016;14(1):66-72
Flavonoids are a large group of phenolic secondary metabolites havinga wide range of biochemical and pharmacological effects. Quantitative analysis of flavonoid profiles in the genus Actinidia, which has not been intensively conducted, is useful to a better understanding of the pattern and distribution of flavonoids. In the present work, a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed to profile the flavonoids, which was then used to determine the dynamic change of 17 biologically active flavonoids in the leaves of Actinidia valvata at the main growing stages, including glucuronides and acylated di- and triglycosides of flavonoids. The contents of flavonoid triglycosides were significantly higher than other flavonoids. The highest concentrations of kaemperol glycosides were observed in June, while other flavonoids showed highest concentrations in October. On the other hand, the contents of four isorhamnetin glycosides were increased sharply in September to October. The flavonoid profiles seem to be related to temperature, UV-B, and water deficit. Further studies are required to examine the functions of flavonoids in the Actinidia valvata and the underlying molecular mechanisms of actions.
Actinidia
;
chemistry
;
growth & development
;
Chromatography, High Pressure Liquid
;
methods
;
Flavonoids
;
analysis
;
chemistry
;
Plant Leaves
;
chemistry
;
Seasons
;
Tandem Mass Spectrometry
;
methods
;
Ultraviolet Rays
10.Histomorphological study on folk medicine Lysimachia fortunei.
Zhi-gui WU ; Xiao-mei FU ; Sheng-fu HU ; Jian-guo PEI ; Fei GE ; Xiao-lan CHU ; Cui-sheng FAN
China Journal of Chinese Materia Medica 2015;40(4):639-642
To set standards for histomorphological studies on Lysimachia fortunei, an efficacious and widely applied folk medicine in this study, in order to develop its resources. Its species were identified by observing plant morphology and herbs appearance characters, preparing slices with routine methods and defining structural characters. According to the results of morphologic observation, leaves, stamen and pistil of this plant were different from the descriptions in Flora of China. The whole herb can be used in medicines, mainly including rhizomes, stems and leaves. According to the findings in the first study on microscopic structures, its rhizomes, stems and leaves were characteristic and worth identifying. The transaction tissue structures of rhizomes and stems were under developed and contained endodermis, secretory structures; Stems had sclerenchymata of different shapes of sclereids; Leaves were bifacial and had vascular bundles under midribs, which were surrounded by parenchymal sheathes. On the surface of leaves, stomata, glandular hairs and keratin lines were morphologically different in upper and lower epidermis. The herbal power had glandular hairs, sclereids and vessels. In conclusion, herbs of L. fortunei can be identified by the above histomorphological characteristics, which lays a foundation for further development and application of L. fortunei.
Medicine, Traditional
;
Plant Leaves
;
anatomy & histology
;
growth & development
;
Plant Stems
;
anatomy & histology
;
growth & development
;
Plants, Medicinal
;
anatomy & histology
;
growth & development
;
Primulaceae
;
anatomy & histology
;
growth & development

Result Analysis
Print
Save
E-mail