1.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
2.Establishment of tissue culture and rapid propagation system of Artemisia stolonifera.
Chu WANG ; Ya XU ; Yang XU ; Ye WANG ; Na-Na CHANG ; Lu-Qi HUANG ; Hui LI
China Journal of Chinese Materia Medica 2025;50(11):2994-3000
As a high-quality moxibustion material, Artemisia stolonifera has high economic value and research prospects. However, due to difficulties in seed germination, its wild germplasm resources are sparsely distributed in China. This study used young stem segments grown in the current year to investigate the effects of explant sterilization, different combinations and concentrations of plant growth regulators on the proliferation and rooting of adventitious shoots, with the aim of constructing an in vitro rapid propagation technology system for A. stolonifera. The results showed that the lowest contamination rate of 25.83% was achieved when sterilizing the stem segments by rinsing with running water for 30 min, soaking in 75% ethanol for 30 s, followed by a 5 min treatment with 0.1% HgCl_2, 10 min with 8% NaClO, and 10 min with 0.6% phytosaniline. There was no browning of the stem segments, and surface sterilization of the A. stolonifera stem segments was successfully achieved. In the induction culture phase, when the concentration of kinetin(KT) was 0.05 mg·L~(-1) and 6-benzylaminopurine(6-BA) was 0.05 mg·L~(-1), the adventitious shoot proliferation coefficient was 2.02, effectively promoting the proliferation and growth of A. stolonifera. In the rooting culture phase, 0.1 mg·L~(-1) 1-naphthaleneacetic acid(NAA) effectively induced A. stolonifera test-tube seedlings to root within a short period, achieving a rooting rate of 100%. The addition of a small amount of activated charcoal also promoted rooting and strengthened seedling growth. The survival rate of A. stolonifera seedlings transplanted into a substrate consisting of 90% nutrient soil and 10% perlite was 100%. This study established an efficient in vitro rapid propagation system for A. stolonifera, overcoming difficulties with seed germination, shortening the breeding cycle, and reducing production and planting costs. It provides technical support for the introduction, domestication, seedling propagation, germplasm conservation, and industrial development of A. stolonifera.
Artemisia/drug effects*
;
Tissue Culture Techniques/methods*
;
Plant Growth Regulators/pharmacology*
;
Plant Stems/drug effects*
;
Plant Shoots/drug effects*
3.Gene cloning, induction, and prokaryotic expression of a Sm14-3-3 protein from Salvia miltiorrhiza.
Chen-Jing SHI ; Shi-Wei WANG ; Jia-Ming PENG ; Hai-Yu XU
China Journal of Chinese Materia Medica 2022;47(18):4886-4894
14-3-3 proteins are important proteins in plants, as they regulate plant growth and development and the response to biotic or abiotic stresses. In this study, a 14-3-3 gene(GenBank accession: OM683281) was screened from the cDNA library of the medicinal species Salvia miltiorrhiza by yeast two-hybrid and cloned. The open reading frame(ORF) was 780 bp, encoding 259 amino a cids. Bioinformatics analysis predicted that the protein was a non-transmembrane protein with the molecular formula of C_(1287)H_(2046)N_(346)O_(422)S_9, relative molecular weight of 29.4 kDa, and no signal peptide. Homologous sequence alignment and phylogenetic tree analysis proved that the protein belonged to 14-3-3 family and had close genetic relationship with the 14-3-3 proteins from Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. The 14-3-3 gene was ligated to the prokaryotic expression vector pGEX-4 T-1 and then transformed into Escherichia coli BL21 for the expression of recombinant protein. Real-time fluorescent quantitative PCR showed that the expression of this gene was different among roots, stems, leaves, and flowers of S. miltiorrhiza. To be specific, the highest expression was found in leaves, followed by stems, and the lowest expression was detected in flowers. S. miltiorrhiza plants were treated with 15% PEG(simulation of drought), and hormones salicylic acid, methyl jasmonate, and ethephon, respectively, and the expression of 14-3-3 gene peaked at the early stage of induction. Therefore, the gene can quickly respond to abiotic stresses such as drought and plant hormone treatments such as salicylic acid, jasmonic acid, and ethylene. This study lays the foundation for revealing the molecular mechanism of 14-3-3 protein regulating tanshinone biosynthesis and responding to biotic and abiotic stresses.
14-3-3 Proteins/metabolism*
;
Amino Acid Sequence
;
Cloning, Molecular
;
Ethylenes/metabolism*
;
Gene Expression Regulation, Plant
;
Hormones/metabolism*
;
Phylogeny
;
Plant Growth Regulators/pharmacology*
;
Plant Proteins/metabolism*
;
Recombinant Proteins/genetics*
;
Salicylic Acid/metabolism*
;
Salvia miltiorrhiza/metabolism*
4.Transcriptomic analysis in Anemone flaccida rhizomes reveals ancillary pathway for triterpene saponins biosynthesis and differential responsiveness to phytohormones.
Guo-Yan MO ; Fang HUANG ; Yin FANG ; Lin-Tao HAN ; Kayla K PENNERMAN ; Li-Jing BU ; Xiao-Wei DU ; Joan W BENNETT ; Guo-Hua YIN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):131-144
Anemone flaccida Fr. Schmidt is a perennial medicinal herb that contains pentacyclic triterpenoid saponins as the major bioactive constituents. In China, the rhizomes are used as treatments for a variety of ailments including arthritis. However, yields of the saponins are low, and little is known about the plant's genetic background or phytohormonal responsiveness. Using one-quarter of the 454 pyrosequencing information from the Roche GS FLX Titanium platform, we performed a transcriptomic analysis to identify 157 genes putatively encoding 26 enzymes involved in the synthesis of the bioactive compounds. It was revealed that there are two biosynthetic pathways of triterpene saponins in A. flaccida. One pathway depends on β-amyrin synthase and is similar to that found in other plants. The second, subsidiary ("backburner") pathway is catalyzed by camelliol C synthase and yields β-amyrin as minor byproduct. Both pathways used cytochrome P450-dependent monooxygenases (CYPs) and family 1 uridine diphosphate glycosyltransferases (UGTs) to modify the triterpenoid backbone. The expression of CYPs and UGTs were quite different in roots treated with the phytohormones methyl jasmonate, salicylic acid and indole-3-acetic acid. This study provides the first large-scale transcriptional dataset for the biosynthetic pathways of triterpene saponins and their phytohormonal responsiveness in the genus Anemone.
Anemone
;
drug effects
;
genetics
;
metabolism
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Cytochrome P-450 Enzyme System
;
genetics
;
metabolism
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
drug effects
;
Glycosyltransferases
;
genetics
;
metabolism
;
Oleanolic Acid
;
analogs & derivatives
;
metabolism
;
Plant Growth Regulators
;
pharmacology
;
Plant Proteins
;
genetics
;
metabolism
;
Plants, Medicinal
;
Rhizome
;
drug effects
;
genetics
;
metabolism
;
Saponins
;
metabolism
;
Triterpenes
;
metabolism
5.Study on exogenous hormones inducing parthenocarpy fruit growth and development and quality of Siraitia grosvenorii.
Jie HUANG ; Dong-ping TU ; Xiao-jun MA ; Chang-ming MO ; Li-mei PAN ; Long-hua BAI ; Shi-xin FENG
China Journal of Chinese Materia Medica 2015;40(18):3567-3572
To explore the growth and development and analyze the quality of the parthenocarpy fruit induced by exogenous hormones of Siraitia grosvenorii. the horizontal and vertical diameter, volume of the fruit were respectively measured by morphological and the content of endogenous hormones were determined by ELISA. The size and seed and content of mogrosides of mature fruit were determined. The results showed that the fruit of parthenocarpy was seedless and its growth and development is similar to the diploid fruit by hand pollination and triploid fruit by hand pollination or hormones. But the absolute value of horizontal and vertical diameter, volume of parthenocarpy fruit was less than those of fruit by hand pollination, while triploid was opposite. The content of IAA, ABA and ratio of ABA/GA was obviously wavy. At 0-30 d the content of IAA and ABA of parthenocarpy fruit first reduced then increased, content of IAA and GA parthenocarpy fruit was higher than that of fruit by hand pollination. Mogrosides of parthenocarpy fruit was close to pollination fruit. Hormones can induce S. grosvenorii parthenocarpy to get seedless fruit and the fruit shape and size and quality is close to normal diploid fruit by hand pollination and better than triploid fruit by hormone or hand pollination.
Cucurbitaceae
;
chemistry
;
drug effects
;
genetics
;
growth & development
;
Diploidy
;
Fruit
;
chemistry
;
genetics
;
growth & development
;
Plant Growth Regulators
;
pharmacology
6.Effects of plant growth regulator uniconazole on plant morphology and biomass allocation of Salvia miltiorrhiza.
Shu-rui GAO ; Zhi-gang ZHAO ; Jun-ling HOU ; Wen-quan WANG ; Yan SONG ; Bin-bin YAN ; Yan-qing JIN
China Journal of Chinese Materia Medica 2015;40(10):1925-1929
In this study, we use pot experiment to evaluate the effect of plant growth regulator on plant morphology and biomass allocation of Salvia miltiorrhiza. Different concentrations of uniconazole were supplied to S. miltioohiza by means of foliar spray. Height, breadth and stem diameter were measured dynamically, the biomass of leaf, stem, flower and fruit, root biomass and biomass ratio were also examined at the harvest time. Owing to the treatment, plant morphology showed significant changes, the height had been greatly reduced and the breadth decreased largely. Meanwhile, the biomass allocation changed too. The biomass ratio of leaf and stem had been notably reduced while the biomass ratio of root had been increased remarkably. It appears that foliar application of uniconazole during vigorous growth period in S. miltioohiza has dramatic effect on dwarfing plant and improving resistant to lodging. This measure could also be applied to condensed cultivation of S. miltioohiza to increase production.
Biomass
;
Plant Growth Regulators
;
pharmacology
;
Plant Leaves
;
drug effects
;
growth & development
;
Plant Roots
;
drug effects
;
growth & development
;
Plant Stems
;
drug effects
;
growth & development
;
Salvia miltiorrhiza
;
drug effects
;
growth & development
;
Triazoles
;
pharmacology
7.Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis.
Yu XIANG ; Chun-sheng LIU ; Yong LIU ; Xiao-na SONG ; Xuan GU
China Journal of Chinese Materia Medica 2015;40(9):1688-1692
An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin.
Abscisic Acid
;
pharmacology
;
Color
;
Drugs, Chinese Herbal
;
chemistry
;
Flavanones
;
analysis
;
Glucosides
;
analysis
;
Glycyrrhiza uralensis
;
chemistry
;
drug effects
;
growth & development
;
Glycyrrhizic Acid
;
analysis
;
Plant Growth Regulators
;
pharmacology
8.Detection of agent "zhuanggenling" and investigation of utilization of plant growth retardants in traditional Chinese medicine cultivation.
Yu-yao ZHAI ; Bao-lin GUO ; Wen-hua HUANG
China Journal of Chinese Materia Medica 2015;40(3):414-420
Plant growth retardant as one of plant growth regulator can inhibit the cell division, elongation and growth rate in shoot apical meristem (SAM), which can be reversed by gibberellin regulate the product of photosynthesis transfer to the root and rhizome part. As commonly used plant growth retardant, paclobutrazol, uniconazole, chlorocholine chloride, mepiquat chloride, choline chloride and daminozide are used to promote the growth of root and rhizome, call as "zhuanggenling", "pengdasu", "pengdaji" etc. Single or recombination of plant growth regulator is registered as pesticide, and called as pesticide "zhuanggenling" in this paper. Growth regulator which registered as a foliar fertilizer or fertilization was called agricultural fertilizer "zhuanggenling" in this paper. The author investigate the usage of "zhuanggenling" in the root and rhizome of medicinal plants cultivation from 2012 to 2014 in Sichuan province, Huangyuan town, Mianyang (Ophiopogonis Radix); Pengzhou Aoping town (Chuanxiong Rhizoma); Pengshan Xiejia town (Alismatis Rhizoma); Jiangyou Taiping town and Zhangming town (Aconiti Lateralis Radix Praeparata); Yunnan Wenshan (Notoginseng Radix et Rhizoma); Henan province, Wuzhidafeng Town (Rehmanniae Radix, Achyranthis Bidentatae Radix, Dioscoreae Rhizoma); Gansu Min county (Codonopsis Radix, Angelicae Sinensis Radix); Gansu Li county (Rhei Radix et Rhizoma). The result showed that "zhuanggenling" were applied in the most medicinal plant cultivation except Rhei Radix et Rhizoma. It has been applied widespreadly in Ophiopogonis Radix, Alismatis Rhizoma, Achyranthis Bidentatae Radix, Codonopsis Radix; Rehmanniae Radix, commonly in Angelicae Sinensis Radix application, and occasionally in Chuanxiong Rhizoma, Aconiti Lateralis Radix Praeparata, Notoginseng Radix et Rhizoma and Dioscoreae Rhizoma. In 53 collected sample from plantation areas, fifteen (28%) were pesticide "zhuanggenling", thirty-eight (72%) were pesticide "zhuanggenling". UPLC analysis results showed that 38 farmers fertilizer "zhuanggenling" content of 6 kinds of plant growth retardant. It is regarded that fertilizer "zhuanggenling" was dominant in medicinal plant cultivation, and that the plant growth retardant is added widespreadly in farm fertilizer "zhuanggenling". All evidence proves conclusively that "zhuanggenling" have been used in the proper way, whereas some others have been misused or even abused in the use regarding to type, number, use frequency. The root or rhizoma are increased to 20%-200%. But there is lack of evaluation to appraise the quality of medicinal materials from the aspects of research or industry. "zhuanggenling" has become a important Chemical control material besides fertilizer, insecticidal sterilization of pesticide
China
;
Fertilizers
;
Medicine, Chinese Traditional
;
Plant Growth Regulators
;
pharmacology
;
Plants, Medicinal
;
growth & development
9.Influence of plant growth regulater on yield and quality of Salvia miltiorrhiza.
China Journal of Chinese Materia Medica 2014;39(11):1992-1994
The study is aimed to investigate the effect of plant growth regulators on yield and quality of the Salvia miltiorrhiza. The plant growth regulators was spraying on Salvia plants in July or August in field experiment, then the yield, ingredient content and the antioxidant activity were determined. The results showed that plant growth regulator 'Zhuanggenling' could increase the yield of Salvia with root-planting by 38.45%. Plant growth regulator 'Duoxiaozuo' could increase the yield of Salvia with seedling planting by 14.19%. Both plant growth regulator significantly reduced the antioxidant activity of Salvia in vitro, but they had no significant effect on active ingredient contents.
Diterpenes, Abietane
;
analysis
;
Phenanthrenes
;
analysis
;
Plant Extracts
;
analysis
;
Plant Growth Regulators
;
pharmacology
;
Salvia miltiorrhiza
;
chemistry
;
drug effects
;
growth & development
10.Observation of prime position and driving zones in process of tuberous root expanding and expression analysis of phytohormone relative genes in Rehmannia glutinosa.
Peng-fei WANG ; Xin-yu LI ; Ming-jie LI ; Lin LIU ; Xiao-Ran WANG ; Feng-Qing WANG ; Chun-qi LI ; Xin-Jian CHEN ; Zhong-yi ZHANG
China Journal of Chinese Materia Medica 2014;39(17):3245-3253
In order to study the development characteristics of Rehmannia glutinosa tuberous root expansion and reveal the regulation mechanism of the genes related to hormones in this process, R. glutinosa "wen-85" was used as the experimental material in this study. R. glutinosa tuberous roots of different developmental stages were collected to observe phenotype and tissue morphology using resin semi-thin sections method. The genes related to hormone biosynthesis and response were chosen from the transcriptome of R. glutinosa, which was previously constructed by our laboratory, their expression levels at different development stages were measured by real-time quantitative PCR. The results showed that the root development could be divided into six stages: seeding, elongation, pre-expanding, mid-expanding, late-expanding and maturity stage. The anatomic characteristics indicated that the fission of secondary cambium initiated the tuberous root expansion, and the continuous and rapid division of secondary cambium and accessory cambium kept the sustained and rapid expansion of tuberous root. In addition, a large number oleoplasts were observed in root on the semi-thin and ultra-thin section. The quantitative analysis suggested that the genes related to biosynthesis and response of the IAA, CK, ABA,ethylene, JA and EB were up-regulated expressed, meanwhile, GA synthesis and response genes were down-regulated expressed and the genes of GA negative regulation factors were up-regulated expressed. The maximum levels of most genes expression occurred in the elongation and pre-expansion stage, indicating these two stages were the key periods to the formation and development of tuberous roots. Oleoplasts might be the essential cytological basis for the formation and storage of the unique medicinal components in R. glutinosa. The results of the study are helpful for explanation of development and the molecular regulation mechanism of the tuberous root in R. glutinosa.
Gene Expression Regulation, Developmental
;
drug effects
;
genetics
;
Gene Expression Regulation, Plant
;
drug effects
;
genetics
;
Lipid Droplets
;
metabolism
;
ultrastructure
;
Microscopy, Electron, Transmission
;
Plant Growth Regulators
;
biosynthesis
;
pharmacology
;
Plant Proteins
;
genetics
;
metabolism
;
Plant Roots
;
genetics
;
growth & development
;
metabolism
;
Rehmannia
;
genetics
;
growth & development
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Time Factors

Result Analysis
Print
Save
E-mail