1.Salvianolate injection ameliorates cardiomyopathy by regulating autophagic flux through miR-30a/becn1 axis in zebrafish.
Jianxuan LI ; Yang ZHANG ; Zhi ZUO ; Zhenzhong ZHANG ; Ying WANG ; Shufu CHANG ; Jia HUANG ; Yuxiang DAI ; Junbo GE
Chinese Medical Journal 2025;138(20):2604-2614
BACKGROUND:
Salvianolate is a compound mainly composed of salvia magnesium acetate, which is extracted from the Chinese herb Salvia miltiorrhiza . In recent years, salvianolate injection has been widely used in the treatment of cardiovascular diseases, but the mechanism of how it can alleviate cardiotoxicity remains unclear.
METHODS:
The cardiac injury model was constructed by treatment with doxorubicin (Dox) or azithromycin (Azi) in zebrafish larvae. Heart phenotype, heart rate, and cardiomyocyte apoptosis were observed in the study. RNA-sequencing (RNA-seq) analysis was used to explore the underlying mechanism of salvianolate treatment. Moreover, cardiomyocyte autophagy was assessed by in situ imaging. In addition, the miR-30a/becn1 axis regulation by salvianolate was further investigated.
RESULTS:
Salvianolate treatment reduced the proportion of pericardial edema, recovered heart rate, and inhibited cardiomyocyte apoptosis in Dox/Azi-administered zebrafish larvae. Mechanistically, salvianolate regulated the lysosomal pathway and promoted autophagic flux in zebrafish cardiomyocytes. The expression level of becn1 was increased in Dox-induced myocardial tissue injury after salvianolate administration; overexpression of becn1 in cardiomyocytes alleviated the Dox/Azi-induced cardiac injury and promoted autophagic flux in cardiomyocytes, while becn1 knockdown blocked the effects of salvianolate. In addition, miR-30a, negatively regulated by salvianolate, partially inhibited the cardiac amelioration of salvianolate by targeting becn1 directly.
CONCLUSION
This study has proved that salvianolate reduces cardiomyopathy by regulating autophagic flux through the miR-30a/becn1 axis in zebrafish and is a potential drug for adjunctive Dox/Azi therapy.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Autophagy/drug effects*
;
Myocytes, Cardiac/metabolism*
;
Cardiomyopathies/metabolism*
;
Beclin-1/genetics*
;
Apoptosis/drug effects*
;
Plant Extracts/therapeutic use*
;
Doxorubicin
2.Research progress on biosynthesis of triterpenoids in Centella asiatica.
Pei-Na ZHOU ; Bin CHEN ; Cheng-Jie SHU ; Zhuo-Hang LI ; Peng CHEN ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(3):609-619
The triterpenoid saponins of Centella asiatica, including asiaticoside, madecassoside, asiatic acid, and madecassic acid, are pivotal bioactive compounds of the plant. These constituents exhibit a spectrum of pharmacological activities, such as antioxidant, antitumor, and antidepressant effects, promotion of wound healing, and enhancement of microcirculation. Owing to these therapeutic properties, C. asiatica is widely employed in pharmaceutical and cosmetic industries. However, the escalating global demand for its extracts has led to potential supply shortages, prompting researchers to use multiple strategies such as multi-omics, molecular biology, and synthetic biology to conduct extensive studies. These studies encompass the elucidation of the biosynthetic pathways of triterpenoid saponins in C. asiatica, metabolic regulation, the hormonal induction of secondary metabolite synthesis, and the application of biotechnological strategies for natural product production to increase the yield of secondary metabolites in C. asiatica, or to produce active components via microbial chassis, thus satisfying market demands and promoting the sustainable exploitation of wild C. asiatica resources. This article first introduced the triterpenoid saponins of C. asiatica and their biological activities, then summarized the latest research advancements in their biosynthetic pathways, metabolic regulation, and heterologous biosynthesis, and provided an outlook on future development directions, with the aim of providing reference for comprehensive resource development and biotechnological synthesis of active components from C. asiatica.
Centella/genetics*
;
Triterpenes/chemistry*
;
Biosynthetic Pathways
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts
3.Effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in ADHD rats via Bcl-2/Bax/caspase-3 pathway.
Jing WANG ; Kang-Lin ZHU ; Xin-Qiang NI ; Wen-Hua CAI ; Yu-Ting YANG ; Jia-Qi ZHANG ; Chong ZHOU ; Mei-Jun SHI
China Journal of Chinese Materia Medica 2025;50(3):750-757
This study investigated the effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in rats with attention deficit hyperactivity disorder(ADHD) based on the B-cell lymphoma-2(Bcl-2)/Bcl-2-associated X protein(Bax)/caspase-3 signaling pathway. Twenty-four 3-week-old male spontaneously hypertensive rats(SHR) were randomly divided into a model group, a methylphenidate group(2 mg·kg~(-1)·d~(-1)), and a Rehmanniae Radix Praeparata group(2.4 mg·kg~(-1)·d~(-1)). Age-matched male Wistar Kyoto(WKY) rats were used as the normal control group, with 8 rats in each group. The rats were administered by gavage for 28 days. Body weight and food intake were recorded for each group. The open field test and elevated plus maze test were used to assess hyperactivity and impulsive behaviors. Nissl staining was used to detect changes in striatal neurons and Nissl bodies. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) fluorescence staining was used to detect striatal cell apoptosis. Western blot was employed to detect the expression levels of Bcl-2, Bax, and caspase-3 proteins in the striatum. The results showed that compared with the model group, Rehmanniae Radix Praeparata significantly reduced the total movement distance, average movement speed, and central area residence time in the open field test, and significantly reduced the ratio of open arm entries, open arm stay time, and head dipping in the elevated plus maze test. Furthermore, it increased the number of Nissl bodies in striatal neurons, significantly downregulated the apoptosis index, significantly increased Bcl-2 protein expression and the Bcl-2/Bax ratio, and reduced Bax and caspase-3 protein expression. In conclusion, Rehmanniae Radix Praeparata can reduce hyperactivity and impulsive behaviors in ADHD rats. Its mechanism may be related to the regulation of the Bcl-2/Bax/caspase-3 signaling pathway in the striatum, enhancing the anti-apoptotic capacity of striatal neurons.
Animals
;
Male
;
Apoptosis/drug effects*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Rehmannia/chemistry*
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Signal Transduction/drug effects*
;
Neurons/cytology*
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Humans
;
Corpus Striatum/cytology*
;
Plant Extracts
4.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
5.Anti-hepatic fibrosis effect and mechanism of Albiziae Cortex-Tribuli Fructus based on Nrf2/NLRP3/caspase-1 pathway.
Meng-Yuan ZHENG ; Jing-Wen HUANG ; Si-Chen JIANG ; Ze-Yu XIE ; Yi-Xiao XU ; Li YAO
China Journal of Chinese Materia Medica 2025;50(15):4129-4140
This study aims to explore whether Albiziae Cortex-Tribuli Fructus can exert an anti-hepatic fibrosis effect by regulating the nuclear factor E2-related factor 2(Nrf2)/NOD-like receptor protein 3(NLRP3)/cysteine protease-1(caspase-1) pathway and analyze its potential mechanism. In the in vivo experiment, a mouse model of hepatic fibrosis was established by subcutaneous injection of carbon tetrachloride. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), collagen type Ⅳ(ColⅣ), laminin(LN), procollagen type Ⅲ(PCⅢ), and hyaluronic acid(HA) in the serum of mice were measured using a fully automated biochemical analyzer and ELISA. Hematoxylin and eosin(HE) and Masson staining were used to observe inflammation and collagen fiber deposition in the liver tissue. Western blot and RT-qPCR were employed to detect the protein and mRNA expression of collagen type Ⅰ(collagen Ⅰ), α-smooth muscle actin(α-SMA), Nrf2, NLRP3, gasdermin D(GSDMD), and caspase-1 in the hepatic tissue. In the in vitro experiment, human hepatic stellate cells(HSC-LX2) were pretreated with Nrf2 agonist or inhibitor, followed by the addition of blank serum, AngⅡ + blank serum, and AngⅡ + Albiziae Cortex-Tribuli Fructus-containing serum for intervention. Western blot was used to detect the protein expression of Nrf2, NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, and apoptosis-associated speck-like protein(ASC) in cells. DCFH-DA fluorescence probe was used to detect the cellular ROS levels. The results from the in vivo experiment showed that, compared with the model group, Albiziae Cortex-Tribuli Fructus significantly reduced the serum levels of AST, ALT, ColⅣ, LN, PCⅢ, and HA, reduced the infiltration of inflammatory cells and collagen fiber deposition in the liver tissue, significantly upregulated the protein and mRNA expression of Nrf2 in the liver tissue, and significantly downregulated the protein and mRNA expression of collagen I, α-SMA, NLRP3, GSDMD, and caspase-1 in the liver tissue. The results from the in vitro experiment showed that Nrf2 activation decreased the protein expression of NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, ASC, and ROS levels in HSC-LX2, while Nrf2 inhibition showed the opposite trend. Furthermore, Albiziae Cortex-Tribuli Fructus-containing serum directly decreased the expression of the above proteins and ROS levels. In conclusion, Albiziae Cortex-Tribuli Fructus can effectively improve hepatic fibrosis, and its mechanism of action may involve inhibiting pyroptosis through the regulation of the Nrf2/NLRP3/caspase-1 pathway.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Liver Cirrhosis/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Plant Extracts
;
Tribulus
6.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts
7.Morchella conica, Morchella esculenta and Morchella delicosa Induce Apoptosis in Breast and Colon Cancer Cell Lines via Pro-apoptotic and Anti-apoptotic Regulation.
Faiz UL HAQ ; Muhammad IMRAN ; Sami ULLAH ; Usman AFTAB ; Tasleem AKHTAR ; Asif Haleem KHAN ; Roh ULLAH ; Hasan EJAZ ; Fatema GAFFAR ; Imad KHAN
Chinese journal of integrative medicine 2025;31(10):918-927
OBJECTIVE:
To explore the potential apoptotic mechanisms of 3 Morchella extracts (Morchella conica, Morchella esculenta and Morchella delicosa) on breast and colon cancer cell lines using apoptotic biomarkers.
METHODS:
Human breast cell line (MCF-7) and colon cancer cell line (SW-480) were treated with methanol and ethanol extracts of 3 Morchella species with concentration ranging from 0.0625 to 2 mg/mL. After that their effects on gene expression of apoptosis related markers (pro-apoptotic markers including Bax, caspase-3, caspase-7, and caspase-9, and the antiapoptotic marker including Bcl-2) were determined using reverse transcription polymerase chain reaction.
RESULTS:
All Morchella extracts reduced breast and colon cancer cells proliferation at half inhibitory concentration (IC50) of 0.02 ±0.01 to 0.68 ±0.30 mg/mL. As expected, all Morchella extracts significantly increased gene expressions of Bax, caspase-3, caspase-7, and caspase-9 and downregulated the gene expression of Bcl-2 in MCF-7 and SW-480 cell lines (P<0.05).
CONCLUSIONS
Morchella extracts demonstrated significant anti-proliferative activity against breast and colon cancer cell lines via an apoptosis induction mechanism. Anticancer activity of Morchella extracts and activation of apoptosis in breast and colon cancer cells suggest that it may be used to develop chemotherapeutic agents against cancer in future.
Humans
;
Apoptosis/genetics*
;
Colonic Neoplasms/drug therapy*
;
Breast Neoplasms/drug therapy*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Plant Extracts/pharmacology*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
MCF-7 Cells
;
Ascomycota/chemistry*
8.Identification and biomimetic synthesis of iphionanes and cyperanes from Artemisia hedinii and their anti-hepatic fibrosis activity.
Xiaofei LIU ; Xing WANG ; Chunping TANG ; Changqiang KE ; Bintao HU ; Sheng YAO ; Yang YE
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):871-880
Two novel skeleton sesquiterpenoids (1 and 6), along with four new iphionane-type sesquiterpenes (2-5) and six new cyperane-type sesquiterpenes (7-11), were isolated from the whole plant of Artemisia hedinii (A. hedinii). The two novel skeleton compounds (1 and 6) were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes, respectively. Their structures were elucidated through a comprehensive analysis of spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and 1D and 2D nuclear magnetic resonance (NMR) spectra. The absolute configurations were determined using electronic circular dichroism (ECD) spectra, single-crystal X-ray crystallographic analyses, time-dependent density functional theory (TDDFT) ECD calculation, density functional theory (DFT) NMR calculations, and biomimetic syntheses. The biomimetic syntheses of the two novel skeletons (1 and 6) were inspired by potential biogenetic pathways, utilizing a predominant eudesmane-type sesquiterpene (A) in A. hedinii as the substrate. All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity. Compounds 2, 8, and 10 exhibited significant activity in downregulating the expression of α-smooth muscle actin (α-SMA), a protein involved in hepatic fibrosis.
Artemisia/chemistry*
;
Sesquiterpenes/chemical synthesis*
;
Molecular Structure
;
Humans
;
Liver Cirrhosis/genetics*
;
Biomimetics
;
Plant Extracts/pharmacology*
9.Lirispirolides A-L, a new class of sesquiterpene-monoterpene heterodimers with anti-neuroinflammatory activity from the rare medicinal plant Liriodendron chinense.
Yuhang HE ; Kexin LI ; Yufei WU ; Zexin JIN ; Jinfeng HU ; Yicheng MAO ; Juan XIONG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):938-950
Lirispirolides A-L (1-12), twelve novel sesquiterpene-monoterpene heterodimers featuring distinctive carbon skeletons, were isolated from the branches and leaves of Chinese tulip tree [Liriodendron chinense (L. chinense)], a rare medicinal and ornamental plant endemic to China. The structural elucidation was accomplished through comprehensive spectroscopic analyses, quantum-chemical calculations, and X-ray crystallography. These heterodimers exhibit a characteristic 2-oxaspiro[4.5]decan-1-one structural motif, biosynthetically formed through intermolecular [4 + 2]-cycloaddition between a germacrane-type sesquiterpene and an ocimene-type monoterpene. The majority of the isolated compounds demonstrated significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV-2 microglial cells by reducing the production of pro-inflammatory mediators, specifically tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Further investigation revealed that the lirispirolides' inhibition of NO release correlated with decreased messenger ribonucleic acid (mRNA) expression of inducible NO synthase (iNOS).
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Animals
;
Mice
;
Tumor Necrosis Factor-alpha/genetics*
;
Nitric Oxide/immunology*
;
Microglia/immunology*
;
Molecular Structure
;
Liriodendron/chemistry*
;
Monoterpenes/isolation & purification*
;
Plants, Medicinal/chemistry*
;
Cell Line
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
China
10.Dimeric sesquiterpenoids with anti-inflammatory activities from Inula britannica.
Juan ZHANG ; Jiankun YAN ; Hongjun DONG ; Rui ZHANG ; Jing CHANG ; Yanli FENG ; Xinrong XU ; Wei LI ; Feng QIU ; Chengpeng SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):961-971
In continuation of research aimed at identifying anti-inflammatory agents from natural sesquiterpenoids, an activity-guided fractionation approach utilizing lipopolysaccharide (LPS)-mediated RAW264.7 cells was employed to investigate chemical constituents from Inula Britannica (I. britannica). Seven novel sesquiterpenoid dimers inulabritanoids A-G (1-7) and two novel sesquiterpenoid monomers inulabritanoids H (8) and I (9) were isolated from I. britannica together with eighteen known compounds (10-27). The structural elucidation was accomplished through comprehensive analysis of 1D and 2D nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and electronic circular dichroism (ECD) spectra, complemented by quantum chemical calculations. Compounds 1, 2, 12, 16, 19, and 26 demonstrated inhibitory effects on NO production, with IC50 values of 3.65, 5.48, 3.29, 6.91, 3.12, and 5.67 μmol·L-1, respectively. Mechanistic studies revealed that compound 1 inhibited IκB kinase β (IKKβ) phosphorylation, thereby blocking nuclear factor κB (NF-κB) nuclear translocation, and activated the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway, leading to decreased expression of NADPH oxidase 2 (NOX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), IL-1β, and IL-1α and increased expression of NAD(P)H: quinone oxidoreductase 1 (NQO-1) and heme oxygenase-1 (HO-1), thus exhibiting anti-inflammatory effects in vitro. These results indicate that dimeric sesquiterpenoids may serve as promising candidates for anti-inflammatory drug development.
Mice
;
Animals
;
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Inula/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
;
NF-kappa B/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Macrophages/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
Lipopolysaccharides
;
Tumor Necrosis Factor-alpha/immunology*
;
I-kappa B Kinase/genetics*

Result Analysis
Print
Save
E-mail