1.Effect of processing method on chemical constituents of Rehmanniae Radix: based on UHPLC-LTQ-Orbitrap MS.
Xing-Mei LU ; Ling-Yun ZHONG ; Shuo WANG ; Yan-Wen DENG ; Hong LIU ; Ming-Xia CHEN ; Yi HUANG ; Heng-Li TONG
China Journal of Chinese Materia Medica 2023;48(2):399-414
This study aims to explore the chemical composition of Rehmanniae Radix braised with mild fire and compare the effect of processing method on the chemical composition of Rehmanniae Radix. To be specific, ultra-high performance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) was used to screen the chemical constituents of Rehmanniae Radix. The chemical constituents were identified based on the relative molecular weight and fragment ions, literature information, and Human Metabolome Database(HMDB). The ion peak area ratio of each component before and after processing was used as the index for the variation. SIMCA was employed to establish principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) models of different processed products. According to the PCA plot, OPLS-DA plot, and VIP value, the differential components before and after the processing were screened out. The changes of the content of differential components with the processing method were analyzed. A total of 66 chemical components were identified: 57 of raw Rehmanniae Radix, 55 of steamed Rehmanniae Radix, 55 of wine-stewed Rehmanniae Radix, 51 of repeatedly steamed and sundried Rehmanniae Radix Praeparata, 62 of traditional bran-braised Rehmanniae Radix, and 63 of electric pot-braised Rehmanniae Radix. Among them, the 9 flavonoids of braised Rehmanniae Radix were from Citri Reticulatae Pericarpium. PCA suggested significant differences in the chemical composition of Rehmanniae Radix Praeparata prepared with different processing methods. OPLS-DA screened out 32 chemical components with VIP value >1 as the main differential components. Among the differential components, 9 were unique to braised Rehmanniae Radix(traditional bran-braised, electric pot-braised) and the degradation rate of the rest in braised(traditional bran-braised, electric pot-braised) or repeatedly steamed and sundried Rehmanniae Radix was higher than that in the steamed or wine-stewed products. The results indicated the chemical species and component content of Rehmanniae Radix changed significantly after the processing. The 32 components, such as rehmapicrogenin, martynoside, jionoside D, aeginetic acid, hesperidin, and naringin, were the most important compounds to distinguish different processed products of Rehmanniae Radix. The flavonoids introduced by Citri Reticulatae Pericarpium as excipient may be the important material basis for the effectiveness of braised Rehmanniae Radix compared with other processed products.
Humans
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts/chemistry*
;
Rehmannia/chemistry*
;
Flavonoids/analysis*
2.Optimization of ethanol reflux extraction process of Ziziphi Spinosae Semen- Schisandrae Sphenantherae Fructus based on network pharmacology combined with response surface methodology.
Mian HUANG ; Yu-Meng SONG ; Xi-Yue WANG ; Bing-Tao ZHAI ; Jiang-Xue CHENG ; Xiao-Fei ZHANG ; Dong-Yan GUO
China Journal of Chinese Materia Medica 2023;48(4):966-977
The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.
Ethanol
;
Molecular Docking Simulation
;
Network Pharmacology
;
Seeds/chemistry*
;
Ziziphus/chemistry*
;
Plant Extracts/chemistry*
;
Schisandra/chemistry*
;
Fruit/chemistry*
;
Technology, Pharmaceutical
3.Rapid flavonoid-focused sub-chemome characterization of Draconis Sanguis using UPLC-Q-TOF-MS in combination with molecular weight imprinting and mass defect filtering.
Yi-Jia ZHAO ; Jun LI ; Qing-Qing SONG ; Peng-Fei TU
China Journal of Chinese Materia Medica 2023;48(4):993-1004
Draconis Sanguis is a precious Chinese medicinal material for activating blood and resolving stasis, and its effective components are flavonoids. However, the structural diversity of flavonoids in Draconis Sanguis brings great challenges to the in-depth chara-cterization of its chemical composition profiles. To clarify the substance basis of Draconis Sanguis, ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used in this study to acquire MS data of Draconis Sanguis. The molecular weight imprinting(MWI) and mass defect filtering(MDF) were developed for rapid screening of flavonoids in Draconis Sanguis. Full-scan MS and MS~2 were recorded within the mass range m/z 100-1 000 in positive ion mode. Accor-ding to previous literature, MWI was employed to hunt for reported flavonoids in Draconis Sanguis, and the mass tolerance range of [M+H]~+ was set as ±10×10~(-3). A five-point MDF screening frame was further constructed to narrow the screening range of flavonoids from Draconis Sanguis. Combined with diagnostic fragment ions(DFI) and neutral loss(NL) as well as mass fragmentation pathways, 70 compounds were preliminarily identified from the extract of Draconis Sanguis, including 5 flavan oxidized congeners, 12 flavans, 1 dihydrochalcones, 49 flavonoids dimers, 1 flavonoids trimer and 2 flavonoid derivatives. This study clarified the chemical composition of flavonoids in Draconis Sanguis. Moreover, it also showed that high-resolution MS combined with data post-processing methods such as MWI and MDF could achieve rapid characterization of the chemical composition in Chinese medicinal materials.
Chromatography, High Pressure Liquid
;
Flavonoids
;
Immune Tolerance
;
Molecular Weight
;
Plant Extracts/chemistry*
4.Research progress on chemical constituents and pharmacological activities of Viola plants.
Min ZHANG ; You-Heng GAO ; Ye LI ; Ya-Qiong BI ; Chun-Hong ZHANG ; Min-Hui LI ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(5):1145-1175
There are 500 species of Viola(Violaceae) worldwide, among which 111 species are widely distributed in China and have a long medicinal history and wide varieties. According to the authors' statistics, a total of 410 compounds have been isolated and identified from plants of this genus, including flavonoids, terpenoids, phenylpropanoids, organic acids, nitrogenous compounds, sterols, saccharides and their derivatives, volatile oils and cyclotides. The medicinal materials from these plants boast anti-microbial, anti-viral, anti-oxidant and anti-tumor activities. This study systematically reviewed the chemical constituents and pharmacological activities of Viola plants to provide a basis for further research and clinical application.
Viola/chemistry*
;
Plant Extracts/pharmacology*
;
Flavonoids
;
Terpenes/pharmacology*
;
China
5.Two new prenylated 2-arylbenzofurans from roots of Artocarpus heterophyllus and their anti-respiratory burst activities.
Si CHEN ; Qin LUO ; Hai-Ping ZHAO ; Yu-Ye ZHU ; Wei JIANG ; Wen-Yan LI ; Gang REN
China Journal of Chinese Materia Medica 2023;48(6):1553-1557
Two prenylated 2-arylbenzofurans were isolated from roots of Artocarpus heterophyllus, with a combination of various chromatographic approaches, including ODS, MCI, Sephadex LH-20, and semipreparative high performance liquid chromatography(HPLC). They were identified as 5-[6-hydroxy-4-methoxy-5,7-bis(3-methylbut-2-enyl)benzofuran-2-yl]-1,3-benzenediol(1) and 5-[2H,9H-2,2,9,9-tetramethyl-furo[2,3-f]pyrano[2,3-h][1]benzopyran-6-yl]-1,3-benzenediol(2) with spectroscopic methods, such as HR-ESI-MS, IR, 1D NMR, and 2D NMR, and named artoheterins B(1) and C(2), respectively. The anti-respiratory burst activities of the two compounds were evaluated with rat polymorphonuclear neutrophils(PMNs) stimulated by phorbol 12-myristate 13-acetate(PMA). The results showed that 1 and 2 exhibited significant inhibitory effect on respiratory burst of PMNs with IC_(50) values of 0.27 and 1.53 μmol·L~(-1), respectively.
Rats
;
Animals
;
Molecular Structure
;
Artocarpus/chemistry*
;
Plant Extracts/pharmacology*
;
Magnetic Resonance Spectroscopy
;
Plant Roots/chemistry*
6.Therapeutic Application, Phytoactives and Pharmacology of Tinospora cordifolia: An Evocative Review.
Rabiya AHSAN ; Anuradha MISHRA ; Badruddeen BADAR ; Mohammad OWAIS ; Vijayshwari MISHRA
Chinese journal of integrative medicine 2023;29(6):549-555
Tinospora cordifolia (Guduchi or Gurjo), a herbaceous vine or climbing deciduous shrub, is consider as an important medicine in the Ayurvedic system of medication, which is available in India, China, Myanmar, Bangladesh and Srilanka. Menispermaceae is the family of this compound. T. cordifolia have a variety of properties to treat various ailments such as fevers, jaundice, diabetes, dysentery, urinary infections, and skin diseases. This compound has been subjected to many chemicals, pharmacological, pre-clinical, or clinical investigations and some new therapeutic potential effects have been indicated. This review aims to summarize the critical information concerning in areas of chemical constituents, chemical structure, and pharmacokinetic activities such as anti-diabetic, anticancer, immune-modulatory, antivirus (especially in silico study about COVID-19), antioxidant, antimicrobial, hepatoprotective and its effect on cardiovascular and neurological disorders as well as rheumatoid arthritis. This traditional herb needs more experimental study on the clinical, pre-clinical study, and clinical efficacy of these compounds for the prevention and treatment of COVID-19 and needs large-scale clinical studies to prove the clinical efficacy of this compound, especially in stress-related diseases and other neuronal disorders.
Humans
;
Tinospora/chemistry*
;
COVID-19
;
Plant Extracts/chemistry*
;
Antioxidants/chemistry*
7.Phytochemical Estimation and Therapeutic Amelioration of Aesculus hippocastanum L. Seeds Ethanolic Extract in Gastric Ulcer in Rats Possibly by Inhibiting Prostaglandin Synthesis.
Sahar IDRIS ; Anuradha MISHRA ; Mohammad KHUSHTAR
Chinese journal of integrative medicine 2023;29(9):818-824
OBJECTIVE:
To quantify phytochemicals using liquid chromatography and mass spectroscopy (LCMS) analysis and explore the therapeutic effect of Aesculus hippocastanum L. (AH) seeds ethanolic extract against gastric ulcers in rats.
METHODS:
Preliminary phytochemical testing and LCMS analysis were performed according to standard methods. For treatment, the animals were divided into 7 groups including normal control, ulcer control, self-healing, AH seeds low and high doses, ranitidine and per se groups. Rats were orally administered with 10 mg/kg of indomethacin, excluding the normal control group (which received 1% carboxy methyl cellulose) and the per se group (received 200 mg/kg AH seeds extract). The test group rats were then given 2 doses of AH seeds extract (100 and 200 mg/kg, respectively), while the standard group was given ranitidine (50 mg/kg). On the 11th day, rats in all groups were sacrificed, and their stomach was isolated to calculate the ulcer index, and other parameters such as blood prostaglandin (PGE2), tissue superoxide dismutase (SOD), catalase (CAT), malonyldialdehyde (MDA), and glutathione (GSH). All isolated stomach tissues were analyzed for histopathological findings.
RESULTS:
The phytochemical examination shows that the AH seeds contain alkaloids, flavonoids, saponins, phenolic components, and glycosides. LCMS analysis confirms the presence of quercetin and rutin. The AH seeds extract showed significant improvement in gastric mucosa conditions after indomethacin-induced gastric lesions (P<0.01). Further marked improvement in blood PGE2 and antioxidant enzymes, SOD, CAT, MDA and GSH, were observed compared with self-healing and untreated ulcer-induced groups (P<0.01). Histopathology results confirmed that AH seeds extract improved the mucosal layer and gastric epithelial membrane in treated groups compared to untreated ulcer-induced groups.
CONCLUSIONS
LCMS report confirms the presence of quercetin and rutin in AH seeds ethanolic extract. The therapeutic effect of AH seeds extract against indomethacin-induced ulcer in rat model indicated the regenerated membrane integrity, with improved cellular functions and mucus thickness. Further, improved antioxidant enzyme level would help to reduce PGE2 biosynthesis.
Rats
;
Animals
;
Stomach Ulcer/pathology*
;
Antioxidants/therapeutic use*
;
Ranitidine/adverse effects*
;
Aesculus
;
Ulcer/drug therapy*
;
Quercetin
;
Plant Extracts/chemistry*
;
Indomethacin/therapeutic use*
;
Glutathione
;
Superoxide Dismutase
;
Rutin/adverse effects*
;
Prostaglandins/adverse effects*
;
Phytochemicals/therapeutic use*
8.Six new coumarins from the roots of Toddalia asiatica and their anti-inflammatory activities.
Haoxuan HE ; Niping LI ; Yunqi FAN ; Qian HUANG ; Jianguo SONG ; Lixia LV ; Fen LIU ; Lei WANG ; Qi WANG ; Jihong GU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):852-858
We reported the discovery of six novel coumarins, toddasirins A-F (1-6), each endowed with modified isoprenyl or geranyl side chains, derived from the roots of Toddalia asiatica. Comprehensive structural elucidation was achieved through multispectroscopic analyses, single-crystal X-ray diffraction experiments, and advanced quantum mechanical electronic circular dichroism (ECD) calculations. Furthermore, the anti-inflammatory activity of these compounds was assessed. Notably, compounds 1-3 and 6 demonstrated notable inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells, with 50% inhibitory concentration (IC50) values of 3.22, 4.78, 8.90, and 4.31 μmol·L-1, respectively.
Mice
;
Animals
;
Coumarins/chemistry*
;
Rutaceae/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
;
Plant Extracts/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
9.Research advance on structure and function of amides in Zanthoxylum plants.
Qian-Nv YE ; Xiao-Feng SHI ; Jun-Li YANG
China Journal of Chinese Materia Medica 2023;48(9):2406-2418
Zanthoxylum belongs to the Rutaceae family, and there are 81 Zanthoxylum species and 36 varieties in China. Most of the Zanthoxylum plants are used as culinary spice. In recent years, scholars in China and abroad have carried out in-depth research on Zanthoxylum plants, and found that the peculiar numbing sensation of Zanthoxylum plants originates from amides. It is also determined that amides are an important material basis for exerting pharmacological effects, especially in anti-inflammatory analgesia, anesthesia and other aspects. In this paper, 123 amides in 26 Zanthoxylum plants and their pharmacological activity that have been reported were summarized, which provided scientific reference for the clinical application of Zanthoxylum plants and the research and development of new drugs, and also facilitated the sustainable development and utilization of Zanthoxylum plant resources.
Zanthoxylum/chemistry*
;
Amides/chemistry*
;
Plant Extracts/pharmacology*
;
China
10.Toxicity attenuation processing technology and mechanism of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction.
Bing-Yin LI ; Jun-Ming WANG ; Ling-Ling SONG ; Ya-Qian DUAN ; Bing-Yu LONG ; Ling-Yu QIN ; Xiao-Hui WU ; Yan-Mei WANG ; Ming-Zhu GONG
China Journal of Chinese Materia Medica 2023;48(9):2455-2463
This study explored toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction for the first time, and further explored its detoxification mechanism. Nine processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction were prepared by orthogonal experiment with three factors and three levels. Based on the decrease in the content of the main hepatotoxic component diosbulbin B before and after processing of Rhizoma Dioscoreae Bulbiferae by high-performance liquid chromatography, the toxicity attenuation technology was preliminarily screened out. On this basis, the raw and representative processed products of Rhizoma Dioscoreae Bulbiferae were given to mice by gavage with 2 g·kg~(-1)(equival to clinical equivalent dose) for 21 d. The serum and liver tissues were collected after the last administration for 24 h. The serum biochemical indexes reflecting liver function and liver histopathology were combined to further screen out and verify the proces-sing technology. Then, the lipid peroxidation and antioxidant indexes of liver tissue were detected by kit method, and the expressions of NADPH quinone oxidoreductase 1(NQO1) and glutamate-cysteine ligase(GCLM) in mice liver were detected by Western blot to further explore detoxification mechanism. The results showed that the processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reduced the content of diosbulbin B and improved the liver injury induced by Rhizoma Dioscoreae Bul-biferae to varying degrees, and the processing technology of A_2B_2C_3 reduced the excessive levels of alanine transaminase(ALT) and aspartate transaminase(AST) induced by raw Rhizoma Dioscoreae Bulbiferae by 50.2% and 42.4%, respectively(P<0.01, P<0.01). The processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reversed the decrease protein expression levels of NQO1 and GCLM in the liver of mice induced by raw Rhizoma Dioscoreae Bulbiferae to varying degrees(P<0.05 or P<0.01), and it also reversed the increasing level of malondialdehyde(MDA) and the decreasing levels of glutathione(GSH), glutathione peroxidase(GPX), and glutathione S-transferase(GST) in the liver of mice(P<0.05 or P<0.01). In summary, this study shows that the optimal toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction is A_2B_2C_3, that is, 10% of Paeoniae Radix Alba decoction is used for moistening Rhizoma Dioscoreae Bulbiferae and processed at 130 ℃ for 11 min. The detoxification mechanism involves enhancing the expression levels of NQO1 and GCLM antio-xidant proteins and related antioxidant enzymes in the liver.
Mice
;
Animals
;
Antioxidants/analysis*
;
Plant Extracts/pharmacology*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Paeonia/chemistry*
;
Glutathione/analysis*

Result Analysis
Print
Save
E-mail