1.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
2.Beneficial Effects of Dendrobium officinale Extract on Insomnia Rats Induced by Strong Light and Noise via Regulating GABA and GABAA Receptors.
Heng-Pu ZHOU ; Jie SU ; Ke-Jian WEI ; Su-Xiang WU ; Jing-Jing YU ; Yi-Kang YU ; Zhuang-Wei NIU ; Xiao-Hu JIN ; Mei-Qiu YAN ; Su-Hong CHEN ; Gui-Yuan LYU
Chinese journal of integrative medicine 2025;31(6):490-498
OBJECTIVE:
To explore the therapeutic effects and underlying mechanisms of Dendrobium officinale (Tiepi Shihu) extract (DOE) on insomnia.
METHODS:
Forty-two male Sprague-Dawley rats were randomly divided into 6 groups (n=7 per group): normal control, model control, melatonin (MT, 40 mg/kg), and 3-dose DOE (0.25, 0.50, and 1.00 g/kg) groups. Rats were raised in a strong-light (10,000 LUX) and -noise (>80 db) environment (12 h/d) for 16 weeks to induce insomnia, and from week 10 to week 16, MT and DOE were correspondingly administered to rats. The behavior tests including sodium pentobarbital-induced sleep experiment, sucrose preference test, and autonomous activity test were used to evaluate changes in sleep and emotions of rats. The metabolic-related indicators such as blood pressure, blood viscosity, blood glucose, and uric acid in rats were measured. The pathological changes in the cornu ammonis 1 (CA1) region of rat brain were evaluated using hematoxylin and eosin staining and Nissl staining. Additionally, the sleep-related factors gamma-aminobutyric acid (GABA), glutamate (GA), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) were measured using enzyme linked immunosorbent assay. Finally, we screened potential sleep-improving receptors of DOE using polymerase chain reaction (PCR) array and validated the results with quantitative PCR and immunohistochemistry.
RESULTS:
DOE significantly improved rats' sleep and mood, increased the sodium pentobarbital-induced sleep time and sucrose preference index, and reduced autonomic activity times (P<0.05 or P<0.01). DOE also had a good effect on metabolic abnormalities, significantly reducing triglyceride, blood glucose, blood pressure, and blood viscosity indicators (P<0.05 or P<0.01). DOE significantly increased the GABA content in hippocampus and reduced the GA/GABA ratio and IL-6 level (P<0.05 or P<0.01). In addition, DOE improved the pathological changes such as the disorder of cell arrangement in the hippocampus and the decrease of Nissel bodies. Seven differential genes were screened by PCR array, and the GABAA receptors (Gabra5, Gabra6, Gabrq) were selected for verification. The results showed that DOE could up-regulate their expressions (P<0.05 or P<0.01).
CONCLUSION
DOE demonstrated remarkable potential for improving insomnia, which may be through regulating GABAA receptors expressions and GA/GABA ratio.
Animals
;
Dendrobium/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Sleep Initiation and Maintenance Disorders/blood*
;
Plant Extracts/therapeutic use*
;
Receptors, GABA-A/metabolism*
;
Noise/adverse effects*
;
Light/adverse effects*
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep/drug effects*
;
Rats
;
Receptors, GABA/metabolism*
3.Phytochemical Estimation and Therapeutic Amelioration of Aesculus hippocastanum L. Seeds Ethanolic Extract in Gastric Ulcer in Rats Possibly by Inhibiting Prostaglandin Synthesis.
Sahar IDRIS ; Anuradha MISHRA ; Mohammad KHUSHTAR
Chinese journal of integrative medicine 2023;29(9):818-824
OBJECTIVE:
To quantify phytochemicals using liquid chromatography and mass spectroscopy (LCMS) analysis and explore the therapeutic effect of Aesculus hippocastanum L. (AH) seeds ethanolic extract against gastric ulcers in rats.
METHODS:
Preliminary phytochemical testing and LCMS analysis were performed according to standard methods. For treatment, the animals were divided into 7 groups including normal control, ulcer control, self-healing, AH seeds low and high doses, ranitidine and per se groups. Rats were orally administered with 10 mg/kg of indomethacin, excluding the normal control group (which received 1% carboxy methyl cellulose) and the per se group (received 200 mg/kg AH seeds extract). The test group rats were then given 2 doses of AH seeds extract (100 and 200 mg/kg, respectively), while the standard group was given ranitidine (50 mg/kg). On the 11th day, rats in all groups were sacrificed, and their stomach was isolated to calculate the ulcer index, and other parameters such as blood prostaglandin (PGE2), tissue superoxide dismutase (SOD), catalase (CAT), malonyldialdehyde (MDA), and glutathione (GSH). All isolated stomach tissues were analyzed for histopathological findings.
RESULTS:
The phytochemical examination shows that the AH seeds contain alkaloids, flavonoids, saponins, phenolic components, and glycosides. LCMS analysis confirms the presence of quercetin and rutin. The AH seeds extract showed significant improvement in gastric mucosa conditions after indomethacin-induced gastric lesions (P<0.01). Further marked improvement in blood PGE2 and antioxidant enzymes, SOD, CAT, MDA and GSH, were observed compared with self-healing and untreated ulcer-induced groups (P<0.01). Histopathology results confirmed that AH seeds extract improved the mucosal layer and gastric epithelial membrane in treated groups compared to untreated ulcer-induced groups.
CONCLUSIONS
LCMS report confirms the presence of quercetin and rutin in AH seeds ethanolic extract. The therapeutic effect of AH seeds extract against indomethacin-induced ulcer in rat model indicated the regenerated membrane integrity, with improved cellular functions and mucus thickness. Further, improved antioxidant enzyme level would help to reduce PGE2 biosynthesis.
Rats
;
Animals
;
Stomach Ulcer/pathology*
;
Antioxidants/therapeutic use*
;
Ranitidine/adverse effects*
;
Aesculus
;
Ulcer/drug therapy*
;
Quercetin
;
Plant Extracts/chemistry*
;
Indomethacin/therapeutic use*
;
Glutathione
;
Superoxide Dismutase
;
Rutin/adverse effects*
;
Prostaglandins/adverse effects*
;
Phytochemicals/therapeutic use*
5.Phytochemicals of Periploca aphylla Dcne. ameliorated streptozotocin-induced diabetes in rat.
Umbreen RASHID ; Muhammad Rashid KHAN
Environmental Health and Preventive Medicine 2021;26(1):38-38
BACKGROUND:
Periploca aphylla is used by local population and indigenous medicine practitioners as stomachic, tonic, antitumor, antiulcer, and for treatment of inflammatory disorders. The aim of this study was to evaluate antidiabetic effect of the extract of P. aphylla and to investigate antioxidant and hypolipidemic activity in streptozotocin (STZ)-induced diabetic rats.
METHODS:
The present research was conducted to evaluate the antihyperglycemic potential of methanol extract of P. aphylla (PAM) and subfractions n-hexane (PAH), chloroform (PAC), ethyl acetate (PAE), n-butanol (PAB), and aqueous (PAA) in glucose-overloaded hyperglycemic Sprague-Dawley rats. Based on the efficacy, PAB (200 mg/kg and 400 mg/kg) was tested for its antidiabetic activity in STZ-induced diabetic rats. Diabetes was induced via intraperitoneal injection of STZ (55 mg/kg) in rat. Blood glucose values were taken weekly. HPLC-DAD analysis of PAB was carried out for the presence of various polyphenols.
RESULTS:
HPLC-DAD analysis of PAB recorded the presence of rutin, catechin, caffeic acid, and myricetin. Oral administration of PAB at doses of 200 and 400 mg/kg for 21 days significantly restored (P < 0.01) body weight (%) and relative liver and relative kidney weight of diabetic rats. Diabetic control rats showed significant elevation (P < 0.01) of AST, ALT, ALP, LDH, total cholesterol, triglycerides, LDL, creatinine, total bilirubin, and BUN while reduced (P < 0.01) level of glucose, total protein, albumin, insulin, and HDL in serum. Count of blood cells and hematological parameters were altered in diabetic rats. Further, glutathione peroxidase, catalase, superoxide dismutase, glutathione reductase, and total soluble protein concentration decreased while concentration of thiobarbituric acid reactive substances and percent DNA damages increased (P < 0.01) in liver and renal tissues of diabetic rats. Histopathological damage scores increased in liver and kidney tissues of diabetic rats. Intake of PAB (400 mg/kg) resulted in significant improvement (P < 0.01) of above parameters, and results were comparable to that of standard drug glibenclamide.
CONCLUSION
The result suggests the antihyperglycemic, antioxidant, and anti-inflammatory activities of PAB treatment in STZ-compelled diabetic rat. PAB might be used as new therapeutic agent in diabetic patients to manage diabetes and decrease the complications.
1-Butanol/chemistry*
;
Administration, Oral
;
Animals
;
Diabetes Mellitus, Experimental/drug therapy*
;
Dose-Response Relationship, Drug
;
Hypoglycemic Agents/chemistry*
;
Male
;
Periploca/chemistry*
;
Phytochemicals/chemistry*
;
Plant Extracts/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin/adverse effects*
6.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
7.Cimicifuga heracleifolia is therapeutically similar to black cohosh in relieving menopausal symptoms: evidence from pharmacological and metabolomics studies.
Lan-Yun MIAO ; Thi Thanh Huyen CHU ; Ping LI ; Yan JIANG ; Hui-Jun LI
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):435-445
In the market of botanical dietary supplements, Cimicifuga heracleifolia (CH) has always been considered as an adulterated species of Cimicifuga racemosa (CR), a conventional American herb with promising benefits to counteract troubles arising from the menopause. However, the detailed comparison of their therapeutic effects is lacking. In present study, the pharmacological and metabolomics studies were comparatively conducted between CH and CR in ovariectomized (OVX) female rats. Specifically, estrogen-like, anti-hyperlipidemia and anti-osteoporosis effects were evaluated through measuring serum biochemical parameters, histopathological examination and micro computed tomography (Micro-CT) scanning. At the same time, a gas chromatography-mass spectrometry (GC-MS)-based serum metabolomics method was employed to profile the metabolite compositional changes. As a result, both CR and CH displayed anti-osteoporosis and anti-hyperlipemia on menopause syndrome. Meanwhile, their potentials in improving the OVX-induced metabolic disorders were discovered. In conclusion, these results demonstrated that CH is therapeutically similar to CR in relieving menopausal symptoms and CH could be considered as a promising alternative to CR instead of an adulterant in the market of botanical dietary supplements.
Animals
;
Cimicifuga
;
chemistry
;
classification
;
Dietary Supplements
;
analysis
;
Drug Evaluation, Preclinical
;
Female
;
Humans
;
Menopause
;
blood
;
drug effects
;
Metabolomics
;
Osteoporosis
;
blood
;
drug therapy
;
Ovariectomy
;
adverse effects
;
Phytotherapy
;
Plant Extracts
;
administration & dosage
;
blood
;
Rats
;
Rats, Sprague-Dawley
8.Protective effect of supplementation with Lycium ruthenicum Murray extract from exhaustive exercise-induced cardiac injury in rats.
Chien-Wei HOU ; I-Chen CHEN ; Fang-Rui SHU ; Chin-Hsing FENG ; Chang-Tsen HUNG
Chinese Medical Journal 2019;132(8):1005-1006
Animals
;
Cardiovascular Diseases
;
drug therapy
;
etiology
;
Creatine Kinase, MB Form
;
blood
;
Heart
;
drug effects
;
Interleukin-1
;
blood
;
Interleukin-6
;
blood
;
Lycium
;
chemistry
;
Male
;
Nitrates
;
blood
;
Oxidative Stress
;
drug effects
;
Physical Conditioning, Animal
;
adverse effects
;
Plant Extracts
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
blood
9.Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe-induced pancreatic oxidative stress.
Olakunle Bamikole AFOLABI ; Omotade Ibidun OLOYEDE ; Shadrack Oludare AGUNBIADE
Journal of Integrative Medicine 2018;16(3):192-198
OBJECTIVEThe current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates.
METHODSIn this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity.
RESULTSThe total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC = 28.5 µg/mL) than the bound phenolic extract (IC = 340.0 µg/mL). On the contrary, the free phenolic extract (IC = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC = 190.0 µg/mL).
CONCLUSIONThe phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro.
Animals ; Antioxidants ; chemistry ; pharmacology ; Diabetes Mellitus, Type 2 ; enzymology ; metabolism ; Enzyme Inhibitors ; chemistry ; pharmacology ; Glycoside Hydrolase Inhibitors ; chemistry ; pharmacology ; Humans ; Iron ; adverse effects ; Magnoliopsida ; chemistry ; Oxidative Stress ; drug effects ; Pancreas ; drug effects ; enzymology ; metabolism ; Phenols ; chemistry ; pharmacology ; Plant Extracts ; chemistry ; pharmacology ; Rats ; Swine ; alpha-Amylases ; antagonists & inhibitors ; chemistry ; alpha-Glucosidases ; chemistry
10.Terminalia arjuna bark extract attenuates picrotoxin-induced behavioral changes by activation of serotonergic, dopaminergic, GABAergic and antioxidant systems.
Y CHANDRA SEKHAR ; G PHANI KUMAR ; K R ANILAKUMAR
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):584-596
Stress and emotion are associated with several illnesses from headaches to heart diseases and immune deficiencies to central nervous system. Terminalia arjuna has been referred as traditional Indian medicine for several ailments. The present study aimed to elucidate the effect of T. arjuna bark extract (TA) against picrotoxin-induced anxiety. Forty two male Balb/c mice were randomly divided into six experimental groups (n = 7): control, diazepam (1.5 mg·kg), picrotoxin (1 mg·kg) and three TA treatemt groups (25, 50, and 100 mg/kg). Behavioral paradigms and PCR studies were performed to determine the effect of TA against picrotoxin-induced anxiety. The results showed that TA supplementation increased locomotion towards open arm (EPM) and illuminated area (light-dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, TA increased number of licks and shocks in Vogel's conflict. PCR studies showed an up-regulation of several genes, such as BDNF, IP, DL, CREB, GABA, SOD, GPx, and GR in TA administered groups. In conclusion, alcoholic extract of TA bark showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes.
Animals
;
Antioxidants
;
metabolism
;
Anxiety Disorders
;
drug therapy
;
genetics
;
metabolism
;
psychology
;
Brain-Derived Neurotrophic Factor
;
genetics
;
metabolism
;
Dopamine Agents
;
administration & dosage
;
GABA Agents
;
administration & dosage
;
Glutathione Peroxidase
;
genetics
;
metabolism
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Neuronal Plasticity
;
drug effects
;
Neurotransmitter Agents
;
metabolism
;
Phytotherapy
;
Picrotoxin
;
adverse effects
;
Plant Bark
;
chemistry
;
Plant Extracts
;
administration & dosage
;
Serotonin Agents
;
administration & dosage
;
Superoxide Dismutase-1
;
genetics
;
metabolism
;
Terminalia
;
chemistry

Result Analysis
Print
Save
E-mail