1.Research progress on variety breeding of root- and rhizome-derived traditional Chinese medicine.
Yan CHEN ; Miao-Yin DONG ; Zhan-Feng CAO ; Xue-Zhou LIU ; Meng-Fei LI ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(2):363-383
Germplasm degeneration occurs during the long-term cultivation of root-and rhizome-derived traditional Chinese medicine(RR-TCM), which seriously restricts the high-quality development of their industry. Therefore, it is urgent to solve the problem of germplasm degeneration through variety breeding. In this paper, based on previously published research articles, monographs, and news reports, the research progresses on the number and origins, breeding methods, and selection of new varieties of RR-TCM listed in the Chinese Pharmacopoeia(Edition 2020) were summarized and analyzed. The results show that there are 169 kinds of RR-TCM listed in the Chinese Pharmacopoeia(Edition 2020), originated from 223 origins with three breeding methods(i.e., seed propagation, vegetative reproduction, and tissue culture), and there are 215 species derived from seed propagation, 177 species derived from vegetative reproduction, and 164 species derived from tissue culture. To date, there are 62 origins breeding new varieties through conventional breeding, cross breeding, mutation breeding, ploidy breeding, or modern biotechnology breeding methods, including 57 origins breeding 145 new varieties through conventional breeding, 10 origins breeding 43 new varieties through mutation breeding, and seven origins breeding 12 new varieties through cross breeding method. They are used mainly to improve yield, disease resistance, and active ingredient content, but only a few new varieties have been widely used. This review will provide useful references in variety breeding, quality breeding, and standardized planting of RR-TCM.
Plant Breeding/methods*
;
Plant Roots/growth & development*
;
Rhizome/growth & development*
;
Drugs, Chinese Herbal
;
Plants, Medicinal/classification*
;
Medicine, Chinese Traditional
2.Transcriptome sequencing reveals molecular mechanism of seed dormancy release of Zanthoxylum nitidum.
Chang-Qian QUAN ; Dan-Feng TANG ; Jian-Ping JIANG ; Yan-Xia ZHU
China Journal of Chinese Materia Medica 2025;50(1):102-110
The transcriptome sequencing based on Illumina Novaseq 6000 Platform was performed with the untreated seed embryo(DS), stratified seed embryo(SS), and germinated seed embryo(GS) of Zanthoxylum nitidum, aiming to explore the molecular mechanism regulating the seed dormancy and germination of Z. nitidum and uncover key differentially expressed genes(DEGs). A total of 61.41 Gb clean data was obtained, and 86 386 unigenes with an average length of 773.49 bp were assembled. A total of 29 290 DEGs were screened from three comparison groups(SS vs DS, GS vs SS, and GS vs DS), and these genes were annotated on 134 Kyoto Encyclopedia of Genes and Genomes(KEGG) pathways. KEGG enrichment analysis revealed that the plant hormone signal transduction pathway is the richest pathway, containing 226 DEGs. Among all DEGs, 894 transcription factors were identified, which were distributed across 34 transcription factor families. These transcription factors were also mainly concentrated in plant hormone signal transduction and mitogen-activated protein kinase(MAPK) signaling pathways. Further real-time quantitative polymerase chain reaction(RT-qPCR) validation of 12 DEGs showed that the transcriptome data is reliable. During the process of seed dormancy release and germination, a large number of DEGs involved in polysaccharide degradation, protein synthesis, lipid metabolism, and hormone signal transduction were expressed. These genes were involved in multiple metabolic pathways, forming a complex regulatory network for dormancy and germination. This study lays a solid foundation for analyzing the molecular mechanisms of seed dormancy and germination of Z. nitidum.
Zanthoxylum/metabolism*
;
Plant Dormancy/genetics*
;
Seeds/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Transcriptome
;
Gene Expression Profiling
;
Germination
;
Transcription Factors/metabolism*
;
Plant Growth Regulators/genetics*
;
Signal Transduction
3.One-year seedling cultivation technology and seed germination-promoting mechanism by warm water soaking of Polygonatum kingianum var. grandifolium.
Ke FU ; Jian-Qing ZHOU ; Zhi-Wei FAN ; Mei-Sen YANG ; Ya-Qun CHENG ; Yan ZHU ; Yan SHI ; Jin-Ping SI ; Dong-Hong CHEN
China Journal of Chinese Materia Medica 2025;50(4):1022-1030
Polygonati Rhizoma demonstrates significant potential for addressing both chronic and hidden hunger. The supply of high-quality seedlings is a primary factor influencing the development of the Polygonati Rhizoma industry. Warm water soaking is often used in agriculture to promote the rapid germination of seeds, while its application and molecular mechanism in Polygonati Rhizoma have not been reported. To rapidly obtain high-quality seedlings, this study treated Polygonatum kingianum var. grandifolium seeds with sand storage at low temperatures, warm water soaking, and cultivation temperature gradients. The results showed that the culture at 25 ℃ or sand storage at 4 ℃ for 2 months rapidly broke the seed dormancy of P. kingianum var. grandifolium, while the culture at 20 ℃ or sand storage at 4 ℃ for 1 month failed to break the seed dormancy. Soaking seeds in 60 ℃ warm water further increased the germination rate, germination potential, and germination index. Specifically, the seeds soaked at 60 ℃ and cultured at 25 ℃ without sand storage treatment(Aa25) achieved a germination rate of 78. 67%±1. 53% on day 42 and 83. 40%±4. 63% on day 77. The seeds pretreated with sand storage at 4 ℃ for 2 months, soaked in 60 ℃ water, and then cultured at 25 ℃ achieved a germination rate comparable to that of Aa25 on day 77. Transcriptomic analysis indicated that warm water soaking might promote germination by triggering reactive oxygen species( ROS), inducing the expression of heat shock factors( HSFs) and heat shock proteins( HSPs), which accelerated DNA replication, transcript maturation, translation, and processing, thereby facilitating the accumulation and turnover of genetic materials. According to the results of indoor controlled experiments and field practices, maintaining a germination and seedling cultivation environment at approximately 25 ℃ was crucial for the one-year seedling cultivation of P. kingianum var. grandifolium.
Germination
;
Seedlings/genetics*
;
Water/metabolism*
;
Seeds/metabolism*
;
Polygonatum/genetics*
;
Temperature
;
Plant Proteins/genetics*
;
Plant Dormancy
4.Biological characteristics of pathogen causing damping off on Aconitum kusnezoffiii and inhibitory effect of effective fungicides.
Si-Yi GUO ; Si-Yao ZHOU ; Tie-Lin WANG ; Ji-Peng CHEN ; Zi-Bo LI ; Ru-Jun ZHOU
China Journal of Chinese Materia Medica 2025;50(7):1727-1734
Aconitum kusnezoffii is a perennial herbaceous medicinal plant of the family Ranunculaceae, with unique medicinal value. Damping off is one of the most important seedling diseases affecting A. kusnezoffii, occurring widely and often causing large-scale seedling death in the field. To clarify the species of the pathogen causing damping off in A. kusnezoffii and to formulate an effective control strategy, this study conducted pathogen identification, research on biological characteristics, and evaluation of fungicide inhibitory activity. Through morphological characteristics, cultural traits, and phylogenetic tree analysis, the pathogen causing damping off in A. kusnezoffii was identified as Rhizoctonia solani, belonging to the AG5 anastomosis group. The optimal temperature for mycelial growth of the pathogen was 25-30 ℃, with OA medium as the most suitable medium, pH 8 as the optimal pH, and sucrose and yeast as the best carbon and nitrogen sources, respectively. The effect of light on mycelial growth was not significant. In evaluating the inhibitory activity of 45 chemical fungicides, including 30% hymexazol, and 4 biogenic fungicides, including 0.3% eugenol, it was found that 30% thifluzamide and 50% fludioxonil had significantly better inhibitory effects on R. solani than other tested agents, with EC_(50) values of 0.129 6,0.220 6 μg·mL~(-1), respectively. Among the biogenic fungicides, 0.3% eugenol also showed an ideal inhibitory effect on the pathogen, with an EC_(50) of 1.668 9 μg·mL~(-1). To prevent the development of resistance in the pathogen and to reduce the use of chemical fungicides, it is recommended that the three fungicides above be used in rotation during production. These findings provide a theoretical basis for the accurate diagnosis and effective control strategy for R. solani causing damping off in A. kusnezoffii.
Fungicides, Industrial/pharmacology*
;
Plant Diseases/microbiology*
;
Rhizoctonia/growth & development*
;
Aconitum/microbiology*
;
Phylogeny
;
Mycelium/growth & development*
5.Development of DUS testing guidelines for new Atractylodes lancea varieties.
Cheng-Cai ZHANG ; Ming QIN ; Xiu-Zhi GUO ; Zi-Hua ZHANG ; Hao-Kuan ZHANG ; Xiao-Yu DAI ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(6):1515-1523
Atractylodes lancea is a perennial herbaceous plant of Asteraceae, with rhizomes for medical use. However, A. lancea plants from different habitats have great variability, and the germplasm resources of A. lancea are unclear and mixed during production. Therefore, it is urgent to protect new varieties of A. lancea. The distinctness, uniformity, and stability(DUS) testing of new plant varieties is the foundation of plant variety protection, and the DUS testing guidelines are the technical basis for variety approval agencies to conduct DUS testing. In this study, the phenotypic traits of 94 germplasm accessions of A. lancea were investigated considering the breeding and variety characteristics of A. lancea in China. The traits were classified and described, and 24 traits were preliminarily determined, including 20 basic traits that must be tested and four traits selected to be tested. The 20 basic traits included 3 quality traits, 5 false quality traits, and 12 quantitative traits, corresponding to 1 plant traits, 2 stem traits, 8 leaf traits, 6 flower traits, and 3 seed traits. The measurement ranges and coefficients of variation of eight quantitative traits were determined, on the basis of which the grading criteria and codes of the traits were determined and assigned. The guidelines has guiding significance for the trait evaluation, utilization, and breeding of new varieties of A. lancea.
Atractylodes/growth & development*
;
China
;
Phenotype
;
Guidelines as Topic
;
Plant Breeding
6.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
7.Occurrence characteristics of traditional Chinese medicine (TCM) root rot and prevention and control strategies against it under new situations.
Wei-Wei GAO ; Wei-Wei ZHANG ; Xi-Mei ZHANG ; Xiao-Lin JIAO ; Xiu WANG ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(13):3561-3568
Medicinal plant underground diseases, typified by root rot, directly result in a significant reduction in both the yield and quality of traditional Chinese medicine(TCM) because of its hidden occurrence and difficulty in prevention and control. Prevention and control measures depending on chemical pesticides bring potential risks to the safety of TCM and easily cause environmental pollution. The introduction of the new version of Good Agricultural Practice for Chinese Crude Drugs(GAP) and the enhancement of pesticide residue limit standards for TCM and decoction pieces in Chinese Pharmacopoeia(2025 edition) have elevated the requirements for green and efficient disease prevention and control technologies of TCM. This paper provided a comprehensive overview of the advancements over the past two decades in the diversity of pathogens, characteristics and hazards associated with disease occurrence, the main prevention and control agents currently registered, and the prevention and control techniques for TCM root rot. In light of the environmental backdrop of global climate change and the increasing frequency of disastrous climates, coupled with the challenges encountered in root rot prevention and control amidst the new paradigm of large-scale and standardized cultivation of TCM, the paper proposed the key direction of basic research and the application strategy for new technologies that integrate "early prevention and control-soil health-digital monitoring", including precise pathogen identification and early disease diagnosis, exploration of host disease resistance mechanisms and disease-resistant breeding, field soil health and ecological regulation, monitoring of fungicide resistance and rational pesticide use, as well as the integration of digital technology and intelligent plant protection. The ultimate goal is to advance the application of green plant protection technology in TCM, thereby providing robust scientific and technological support to ensure the healthy and sustainable development of the TCM agriculture sector.
Plant Diseases/microbiology*
;
Plant Roots/microbiology*
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional
8.Mechanism of inhibiting miR-34a-5p expression and promoting bone growth in mouse brain tissue by Semen Ziziphi Spinosae extract.
Yuan-Yuan PEI ; Yan XIE ; Na YIN ; Wen-Long MA ; Wei-Peng XING ; Gui-Zhi WANG ; Qing-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(10):1061-1070
OBJECTIVE:
To explore the mechanism by which the extract of Semen Ziziphi Spinosae extract promotes bone growth in mice by modulation of the expression of miR-34a-5p in brain tissue.
METHODS:
Mice were assigned to four experimental groups:a normal control group, a drug administration group (receiving 0.320 mg·g-1 body weight of Semen Ziziphi Spinosae extract via intragastric administration), a positive control group (receiving 0.013 mg·g-1 body weight of jujube seed saponin via intragastric administration), and a combination group administration with Semen Ziziphi Spinosae extract plus a 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist (intragastric administration of Semen Ziziphi Spinosae extract combined with intracerebroventricular injection of 8 μg P-MPPF per mice for the final three days of the experiment). Following a 20-day administration period, the effects of the interventions on bone growth, serum growth hormone (GH) levels, and 5-HT2AR expression in brain tissue were evaluated. MicroRNAs (miRNAs) that were differentially expressed in the brain tissues of mice exhibiting bone growth induced by Semen Ziziphi Spinosae extract, as compared to those in normal mice, were identified using a gene chip approach. The interaction between miR-34a-5p and 5-HT2AR was subsequently validated through quantitative reverse transcription polymerase chainreaction (RT-qPCR) and dual-luciferase reporter gene assays. Subsequently, by utilizing the miR-34a-5p inhibitor group and mimics group, along with the normal control group, the drug administration group, the positive control group, and the drug administration combined with miR-34a-5p inhibitor group, the variations in 5-HT2AR expression in mouse brain tissue across all groups were examined, and the binding activity of 5-hydroxytryptamine (5-HT) to the 5-hydroxytryptamine 1A receptor (5-HT1AR) in mice was assessed.
RESULTS:
The body lengths of the normal control group and the drug administration group were(8.9±0.3) and(10.4±0.4) cm;femur lengths were (8.5±0.3) and (9.1±0.5) mm;tibia lengths were (10.7±0.3) and (11.2±0.4) mm, respectively. The contents of GH levels were (58.6±8.2) and (72.9±6.1) ng·ml-1;and the contents of 5-HT2AR were (32.0±5.0) and (21.9± 5.5) ng·ml-1, respectively. Compared with the normal control group, the drug administration group promoted the growth of body length, femur, and tibia in mice, and increased GH secretion, showing statistically significant differences (P<0.05). Additionally, it significantly reduced the content of 5-HT2AR in brain tissue, with statistical significance (P<0.01). The gene chip analysis identified a total of 16 differentially expressed miRNAs, of which 13 were up-regulated and 3 were down-regulated. Bioinformatics analysis predicted that the up-regulated miR-34a-5p could regulate the expression of 5-HT2AR, a prediction that was confirmed through a dual-luciferase reporter gene assay, demonstrating a direct regulatory interaction between the two. Furthermore, in vivo experiments in mice revealed that overexpression and silencing of miR-34a-5p resulted in corresponding changes in the expression levels of 5-HT2AR in brain tissues/cells, as well as in the binding activity between 5-HT and 5-HT1AR.
CONCLUSION
The Semen Ziziphi Spinosae extract promotes animal bone growth by enhancing miR-34a-5p expression in brain tissue, downregulating the expression level of 5-HT2AR, improving the binding activity between 5-HT and 5-HT1AR, and extending slow-wave sleep duration, thereby stimulating GH secretion.
Animals
;
MicroRNAs/metabolism*
;
Mice
;
Male
;
Brain/metabolism*
;
Ziziphus/chemistry*
;
Bone Development/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Plant Extracts/pharmacology*
9.Acinetobacter sp. ME1: a multifunctional bacterium for phytoremediation utilizing melanin production, heavy metal tolerance, and plant growth promotion.
Journal of Zhejiang University. Science. B 2025;26(11):1103-1120
Microorganisms inhabiting soils contaminated with heavy metals produce melanin, a dark brown pigment, as a survival strategy. In this study, a melanin-producing bacterium, Acinetobacter sp. ME1, with heavy metal tolerance and plant growth-promoting traits, was isolated from abandoned mine soil. Strain ME1 exhibited growth at concentrations of Zn up to 250 mg/L, Cd and Pb up to 100 mg/L, and Cr up to 50 mg/L. It had the ability to produce the plant hormone indole-3-acetic acid and siderophores along with 1-aminocyclopropane-1-carboxylic acid deaminase and protease activities. Additionally, it showed antioxidant activity, including catalase and 2,2-diphenyl-1-picryhydrazyl (DPPH) scavenging activities. The optimal conditions for melanin production by ME1 were a pH of 7 and a temperature of 35 ℃. At 1000 mg/L, ME1-extracted melanin exhibited DPPH radical scavenging activity of (25.040±0.007)%, a sun protection factor of 15.200±0.260, and 19.6% antibacterial activity against the plant pathogen Xanthomonas campestris. Furthermore, its adsorption capacity was (0.235±0.073) mg/g melanin for Zn and (0.277±0.008) mg/g melanin for Ni. In plants of Brassica chinensis grown under conditions of hydroponic cultivation with single heavy metal contamination of Cd, Zn, Pb, or Cr, the removal efficiency of each heavy metal was improved by 0.1‒1.8 times after 3 d following inoculation with the strain ME1 compared to the plants grown under the same conditions without inoculation. In addition, ME1 inoculation improved the removal efficiency of each heavy metal by 0.1‒1.0 times under multiple heavy metal contamination conditions. These findings suggest that Acinetobacter sp. ME1 could be used to enhance phytoremediation efficiency in heavy metal-contaminated soils. Moreover, the melanin it produces also holds promise in cosmetics, household products, and medical applications due to its photoprotective, antioxidant, and antimicrobial properties.
Acinetobacter/metabolism*
;
Biodegradation, Environmental
;
Metals, Heavy/metabolism*
;
Melanins/metabolism*
;
Soil Microbiology
;
Antioxidants/metabolism*
;
Plant Development
;
Soil Pollutants/metabolism*
;
Indoleacetic Acids/metabolism*
10.Regulatory roles of JAZ in the growth and development of horticultural plants.
Xinxin ZHANG ; Tao TAO ; Hangchun LI ; Zhi QIAO ; Qinglin TANG ; Dayong WEI ; Yang YANG ; Zhimin WANG
Chinese Journal of Biotechnology 2025;41(2):530-545
Jasmonic acid (JA) is a common plant hormone with regulatory effects on plant growth and development. The jasmonate ZIM-domain (JAZ) proteins (JAZs), as key regulators in the JA signaling pathway, are involved in multiple biological processes such as anthocyanin accumulation, flowering time modulation, and secondary metabolite synthesis in plants. JAZs are essential components of many regulatory signaling networks. The JAZ genes, members of the plant-specific TIFY family, have been identified in the genomes of a variety of horticultural plants. Here, we summarized the research progress in the roles of JAZs in horticultural plants, aiming to give insights into the further study of the biological functions and regulatory networks of JAZ genes in plants.
Horticulture
;
Repressor Proteins/metabolism*
;
Plant Proteins/metabolism*
;
Cyclopentanes/metabolism*
;
Oxylipins/metabolism*
;
Plants/metabolism*
;
Plant Development

Result Analysis
Print
Save
E-mail