1.Genome-wide identification and expression analysis of TCP gene family in Docynia delavayi (Franch.) Schneid.
Baoyue ZHANG ; Guoping LIU ; Jinhong TIAN ; Dawei WANG
Chinese Journal of Biotechnology 2025;41(2):809-824
Docynia delavayi (Franch.) Schneid. is an economic fruit plant with high medicinal and edible values. The TCP gene family plays a vital role in plant growth and development. To explore the function of the TCP gene family in the growth and development of D. delavayi. In this study, the TCP gene family (DdeTCP) members were identified from the D. delavayi genome and their expression levels at different stages of seed germination and fruit development were analyzed. The results showed that a total of 18 DdeTCP genes were identified from the D. delavayi genome, with uneven location on 11 chromosomes. The phylogenetic tree showed that the 18 DdeTCPs could be classified into class Ⅱ (3) and class Ⅱ (15), suggesting that functional differentiation occurred among the DdeTCP family members. DdeTCP11 highly homologous to AtTCP14 was highly expressed in the early stage of seed germination, which suggested that this gene played a key role in seed germination. In addition, DdeTCP16 in class Ⅱ had a high expression level during the fruit ripening stage, which indicated that it might be related to fruit ripening. The findings lay a foundation for probing into the roles of the DdeTCP gene family in the growth and development of D. delavayi.
Phylogeny
;
Gene Expression Regulation, Plant
;
Multigene Family
;
Genome, Plant/genetics*
;
Plant Proteins/genetics*
;
Transcription Factors/genetics*
;
Germination/genetics*
;
Fruit/growth & development*
;
Genes, Plant
2.Mechanisms of SnRK1 in regulating the stress responses, growth, and development of plants.
Jingmin REN ; Guoqiang WU ; Xinmiao ZHANG ; Ming WEI
Chinese Journal of Biotechnology 2025;41(7):2579-2595
Sucrose non-fermenting 1-related protein kinase 1 (SnRK1) is one of the highly conserved Ca2+ non-dependent serine/threonine protein kinases, playing a crucial role in regulating the stress responses, growth, and development of plants. SnRK1 is a three-subunit complex, and it is involved in responding to the signaling transduction induced by low-energy/low-sugar conditions. SnRK1 responds biotic and abiotic stress conditions (such as salt, drought, low/high temperatures, and diseases) through phosphorylation of key metabolic enzymes and regulatory proteins, regulation of transcription, and interactions with other proteins. Furthermore, SnRK1 is not only involved in hormone signaling pathways mediated by abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA), but also regulates plant autophagy by inhibiting the activity of target of rapamycin (TOR). In this review, we summarized the current results of research on the discovery, structure, and classification of plant SnRK1 and its roles in the stress responses, growth, and development of plants. Furthermore, this article proposes the directions of future research. This review provides good genetic resources and a theoretical basis for the genetic improvement and biological breeding for enhancing the stress tolerance of crops.
Stress, Physiological/physiology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Plant Development/genetics*
;
Signal Transduction
;
Gene Expression Regulation, Plant
;
Plant Proteins/physiology*
;
Plants/metabolism*
;
Arabidopsis Proteins/physiology*
;
Plant Growth Regulators/metabolism*
3.Identification of rice htd1 allelic mutant and its regulatory role in grain size.
Yuqi YANG ; Zhining ZHANG ; Jun LIU ; Luyao TANG ; Yiting WEI ; Wen NONG ; Lu YIN ; Sanfeng LI ; Penggen DUAN ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2789-2802
Rice is the world's largest food crop, and its yield and quality are directly related to food security and human health. Grain size, as one of the important factors determining the rice yield, has been widely concerned by breeders and researchers for a long time. To decipher the regulatory mechanism of rice grain size, we obtained a multi-tiller, dwarf, and small-grain mutant htd1 by ethyl methanesulfonate (EMS) mutation from the Japonica rice cultivar 'Zhonghua 11' ('ZH11'). Genetic analysis indicated that the phenotype of htd1 was controlled by a single recessive gene. Using the mutation site map (Mutmap) method, we identified the candidate gene OsHTD1, which encoded a carotenoid cleavage dioxygenase involved in the biosynthesis of strigolactone (SL). The SL content in htd1 was significantly lower than that in 'ZH11'. Cytological analysis showed that the grain size of the mutant decreased due to the reductions in the length and width of glume cells. The function of htd1 was further verified by the CRISPR/cas9 gene editing technology. The plants with the gene knockout exhibited similar grain size to the mutant. In addition, gene expression analysis showed that the expression levels of multiple grain size-related genes in the mutant changed significantly, suggesting that HTD1 may interact with other genes regulating grain size. This study provides a new theoretical basis for research on the regulatory mechanism of rice grain size and potential genetic resources for breeding the rice cultivars with high yields.
Oryza/growth & development*
;
Mutation
;
Edible Grain/growth & development*
;
Alleles
;
Plant Proteins/genetics*
;
Dioxygenases/genetics*
;
Lactones/metabolism*
;
Gene Expression Regulation, Plant
;
Genes, Plant
;
Gene Editing
;
CRISPR-Cas Systems
;
Phenotype
4.Brassica juncea WRKY12 mediates bolting and flowering by interacting with the SOC1 and FUL promoters.
Yifang HUANG ; Yue DONG ; Yue YU ; Dakun LIU ; Qinlin DENG ; Yuanda WANG ; Dayong WEI ; Zhimin WANG ; Qinglin TANG
Chinese Journal of Biotechnology 2025;41(7):2818-2828
Flowering and bolting are important agronomic traits in cruciferous crops such as Brassica juncea. Timely flowering can ensure the crop organ yield and quality, as well as seed propagation. The WRKY family plays an important role in regulating plant bolting and flowering, while the function and mechanism of WRKY12 in B. juncea remain unknown. To explore its function and mechanism in bolting and flowering of B. juncea, we cloned and characterized the BjuWRKY12 gene in B. juncea and found that its expression levels were significantly higher in flowers and inflorescences than in leaves. BjuWRKY12 belonged to the Ⅱc subfamily of the WRKY family, and subcellular localization indicated that the protein was located in the nucleus. Ectopic overexpression of BjuWRKY12 in transgenic lines promoted bolting and flowering, leading to significant increases in the expression levels of flowering integrators SOC1 and FUL. Furthermore, yeast one-hybrid and dual luciferase reporter system assays confirmed that BjuWRKY12 directly bound to the promoters of BjuSOC1 and BjuFUL, undergoing protein-DNA interactions. This discovery gives new insights into the regulation network and molecular mechanisms of BjuWRKY12, laying a theoretical foundation for the breeding of high-yield and high-quality varieties of B. juncea.
Mustard Plant/metabolism*
;
Flowers/growth & development*
;
Plant Proteins/physiology*
;
Promoter Regions, Genetic/genetics*
;
Gene Expression Regulation, Plant
;
Plants, Genetically Modified/genetics*
;
Transcription Factors/metabolism*
;
MADS Domain Proteins/metabolism*
5.Application and prospects of synthetic biology in the genetic improvement of rice.
Luyao TANG ; Yiting WEI ; Yuqing XU ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(10):3840-3862
Synthetic biology, recognized as one of the most revolutionary interdisciplinary fields in the 21st century, has established innovative strategies for the genetic improvement of rice through the integration of multidisciplinary technologies including genome editing, genetic circuit design, metabolic engineering, and artificial intelligence. This review systematically summarizes recent research advancements and breakthrough achievements in the application of synthetic biology in the genetic improvement of rice, focusing on three critical domains: yield improvement, nutritional quality fortification, and reinforcement of disease resistance and abiotic stress tolerance. It elucidates that synthetic biology enables precise genomic and metabolic pathway engineering through modular, standard, and systematic approaches, effectively overcoming the limitations of conventional breeding methods characterized by prolonged cycles and restricted trait modification capabilities. The implementation of synthetic biology has facilitated synergistic improvement of multi-traits, thereby providing critical technical references for developing elite rice cultivars with superior productivity and nutritional value. These technological breakthroughs hold significant implications for ensuring global food security and promoting green and sustainable development of agriculture.
Oryza/growth & development*
;
Synthetic Biology/methods*
;
Metabolic Engineering
;
Plant Breeding/methods*
;
Gene Editing
;
Genetic Engineering/methods*
;
Plants, Genetically Modified/genetics*
;
Disease Resistance/genetics*
6.Quantitative trait locus(QTL) mapping and candidate gene expression analysis of cold tolerance of rice at plumule and seedling stages.
Beibei ZHAO ; Zhining ZHANG ; Yanan JIANG ; Chengxiang HU ; Luyi ZHANG ; Jun LIU ; Jiangmin XU ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(10):3939-3955
Rice (Oryza sativa L.), as a thermophilic crop, is highly susceptible to cold stress during its growth process. Chilling injury at the plumule stage and seedling stage often affects the morphological development and leads to yield reduction of rice. The exploration and utilization of cold tolerance genes are among the most direct and effective approaches to address cold stress in rice. To identify quantitative trait loci (QTLs) associated with cold tolerance at plumule and seedling stages, in this study, we measured the seedling rates and survived seedling rates of the indica rice cultivar 'HZ', the japonica cultivar 'Nekken2', and their 120 recombinant inbred lines (RILs) under cold stress. A previously constructed high-density genetic linkage map was used for the mapping of the QTLs conferring cold tolerance at the plumule and seedling stages. A total of 4 QTLs for plumule-stage cold tolerance and 9 QTLs for seedling-stage cold tolerance were detected, with the maximum limit of detection reaching 5.20. Notably, a genetically overlapping QTL for both plumule and seedling stages was identified on chromosome 8, spanning a physical interval of 24 432 953-25 295 129 bp. Candidate genes within the detected QTL intervals were screened, and quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to analyze the gene expression during the plumule and seedling stages. The results revealed that LOC_Os03g06570, LOC_Os03g07100, LOC_Os06g08280, LOC_Os08g38440, LOC_Os08g39100, and LOC_Os08g39540 exhibited significantly differential expression between the parental lines. These genes were either significantly downregulated or upregulated under cold stress. Among them, the first three gene (LOC_Os03g06570, LOC_Os03g07100, and LOC_Os06g08280) were hypothesized to be key candidates regulating the cold tolerance of rice seedlings, while the latter three genes (LOC_Os08g38440, LOC_Os08g39100, and LOC_Os08g39540) were identified as comprehensive regulators of cold tolerance during both plumule and seedling stages. These findings lay a foundation for the fine mapping and cloning of cold tolerance genes at the plumule and seedling stages, providing valuable insights for breeding cold-tolerant rice varieties.
Quantitative Trait Loci/genetics*
;
Oryza/growth & development*
;
Seedlings/growth & development*
;
Cold Temperature
;
Chromosome Mapping
;
Gene Expression Regulation, Plant
7.Advances on BTB protein ubiquitination mediated plant development and stress response.
Tongtong LÜ ; Wenhui YAN ; Yan LIANG ; Yin DING ; Qingxia YAN ; Jinhua LI
Chinese Journal of Biotechnology 2024;40(1):63-80
The BTB (broad-complex, tramtrack, and bric-à-brac) domain is a highly conserved protein interaction motif in eukaryotes. They are widely involved in transcriptional regulation, protein degradation and other processes. Recently, an increasing number of studies have shown that these genes play important roles in plant growth and development, biotic and abiotic stress processes. Here, we summarize the advances of these proteins ubiquitination-mediated development and abiotic stress responses in plants based on the protein structure, which may facilitate the study of this type of gene in plants.
Eukaryota
;
Plant Development/genetics*
;
Proteolysis
;
Ubiquitination
8.The regulatory role of the RUS family in plant growth and development.
Yao HU ; Sirui LI ; Xinxin ZHANG ; Qinglin TANG ; Dayong WEI ; Shibing TIAN ; Yang YANG ; Zhimin WANG
Chinese Journal of Biotechnology 2024;40(1):81-93
The chloroplast genome encodes many key proteins involved in photosynthesis and other metabolic processes, and metabolites synthesized in chloroplasts are essential for normal plant growth and development. Root-UVB (ultraviolet radiation B)-sensitive (RUS) family proteins composed of highly conserved DUF647 domain belong to chloroplast proteins. They play an important role in the regulation of various life activities such as plant morphogenesis, material transport and energy metabolism. This article summarizes the recent advances of the RUS family proteins in the growth and development of plants such as embryonic development, photomorphological construction, VB6 homeostasis, auxin transport and anther development, with the aim to facilitate further study of its molecular regulation mechanism in plant growth and development.
Female
;
Pregnancy
;
Humans
;
Ultraviolet Rays
;
Biological Transport
;
Chloroplasts/genetics*
;
Embryonic Development
;
Plant Development/genetics*
9.Genomic information mining reveals Rehmannia glutinosa growth-promoting mechanism of endophytic bacterium Kocuria rosea.
Lin-Lin WANG ; Gui-Xiao LA ; Xiu-Hong SU ; Lin-Lin YANG ; Lei-Xia CHU ; Jun-Qi GUO ; Cong-Long LIAN ; Bao ZHANG ; Cheng-Ming DONG ; Sui-Qing CHEN ; Chun-Yan WANG
China Journal of Chinese Materia Medica 2024;49(22):6119-6128
This study explored the growth-promoting effect and mechanism of the endophytic bacterium Kocuria rosea on Rehmannia glutinosa, aiming to provide a scientific basis for the development of green bacterial fertilizer. R. glutinosa 'Jinjiu' was treated with K. rosea, and the shoot parameters including leaf length, leaf width, plant width, and stem diameter were measured every 15 days. After 120 days, the shoots and roots were harvested. The root indicators(root number, root length, root diameter, root fresh weight, root dry weight, root volume, and root vitality) and secondary metabolites(catalpol, rehmannioside A, rehmannioside D, verbascoside, and leonuride) were determined. The R. glutinosa growth-promoting mechanism of K. rosea was discussed from the effect of K. rosea on the nutrient element content in R. glutinosa and rhizosphere soil and the genome information of this plant. After application of K. rosea, the maximum increases in leaf length, leaf width, plant width, and stem diameter were 35.67%(60 d), 25.39%(45 d), 40.17%(60 d), and 113.85%(45 d), respectively. The root number, root length, root diameter, root volume, root fresh weight, root dry weight, and root viability increased by 41.71%, 45.10%, 48.61%, 94.34%, 101.55%, 147.61%, and 42.08%, respectively. In addition, the content of rehmannioside A and verbascoside in the root of R. glutinosa increased by 76.67% and 69.54%, respectively. K. rosea promoted the transformation of nitrogen(N), phosphorus(P), and potassium(K) in the rhizosphere soil into the available state. Compared with that in the control, the content of available N(54.60 mg·kg~(-1)), available P(1.83 μmol·g~(-1)), and available K(83.75 mg·kg~(-1)) in the treatment with K. rosea increased by 138.78%, 44.89%, and 14.34%, respectively. The content of N, P, and K in the treatment group increased by 293.22%, 202.63%, and 23.80% in the roots and by 23.60%, 107.23%, and 134.53% in the leaves of R. glutinosa, respectively. K. rosea carried the genes related to colonization(rbsB, efp, bcsA, and gmhC), N, P, and K metabolism(narG, narH, narI, nasA, nasB, GDH2, pyk, aceB, ackA, CS, ppa, ppk, ppk2, pstS, pstA, pstB, and pstC), and indole-3-acetic acid and zeatin synthesis(iaaH and miaA). Further studies showed that K. rosea could colonize the roots of R. glutinosa and secrete indole-3-acetic acid(3.85 μg·mL~(-1)) and zeatin(0.10 μg·mL~(-1)). In summary, K. rosea promotes the growth of R.ehmannia glutinosa by enhancing the nutrient uptake, which provides a theoretical basis for the development of plant growth-promoting microbial products.
Rehmannia/metabolism*
;
Endophytes/metabolism*
;
Plant Roots/growth & development*
;
Micrococcaceae/genetics*
;
Data Mining
;
Plant Leaves/metabolism*
;
Genomics
;
Rhizosphere
10.Genome-wide identification of SUN gene family in Fragaria vesca and stresses-response analysis.
Yao YU ; Ziyao WANG ; Yiling XU ; Bojun MA ; Xifeng CHEN
Chinese Journal of Biotechnology 2023;39(2):724-740
SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.
Fragaria/metabolism*
;
Genes, Plant
;
Stress, Physiological/genetics*
;
Arabidopsis/genetics*
;
Plant Development
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*

Result Analysis
Print
Save
E-mail