1.Effects of a homozygous missense mutation in the GNE gene p.V543M on cell phenotype and its mechanisms.
Ruolan WU ; Huilong LI ; Pingyun WU ; Qi YANG ; Xueting WAN ; Yuan WU
Journal of Central South University(Medical Sciences) 2025;50(1):105-118
OBJECTIVES:
Uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy is a progressive neurodegenerative disease associated with homozygous or compound heterozygous missense mutations in the GNE gene. This study aims to explore the impact of the homozygous p.V543M mutation in on cell phenotype and to gain preliminary insights into the underlying mechanisms.
METHODS:
Human embryonic kidney 293T (HEK 293T) cells were used to construct wild-type (WT-GNE) and mutant (MUT-GNE) GNE overexpression models. Western blotting and immunofluorescence were used to assess GNE protein expression levels and subcellular localization. Cell adhesion, proliferation, apoptosis, and mitochondrial membrane potential were evaluated using the cell counting kit-8 (CCK-8) assay, crystal violet staining, flow cytometry, Hoechst 33342/propidium iodide (PI) staining, and tetramethylrhodamine ethyl ester (TMRE) staining. Sialic acid synthesis levels and GNE enzymatic activity were measured, and the mRNA expression of sialic acid biosynthesis-related enzymes was quantified by real-time PCR.
RESULTS:
Western blotting confirmed successful establishment of GNE overexpression models. Immunofluorescence showed significantly reduced co-localization of GNE protein with Golgin-97 in the MUT-GNE group compared to WT-GNE (Pearson's correlation coefficient: 0.65±0.08 vs 0.83±0.06, P<0.05). Compared with WT-GNE, cells in the MUT-GNE group exhibited increased adhesion, decreased proliferation, and reduced mitochondrial membrane potential (P<0.05). No significant differences in apoptosis were observed between groups. The MUT-GNE group showed reduced sialic acid production, significantly decreased kinase activity, and downregulated transcription of sialic acid biosynthesis-related enzymes compared to WT-GNE (P<0.001).
CONCLUSIONS
The p.V543M mutation in the GNE gene alters cellular phenotype by reducing GNE enzymatic activity and the transcription of sialic acid biosynthesis enzymes, ultimately impairing sialic acid production.
Humans
;
Mutation, Missense
;
HEK293 Cells
;
Apoptosis/genetics*
;
Phenotype
;
Multienzyme Complexes/metabolism*
;
Cell Proliferation
;
Homozygote
;
Cell Adhesion/genetics*
;
Distal Myopathies/genetics*
2.Inhibitory effects of simeprevir on Staphylococcusepidermidis and itsbiofilm in vitro.
Yingjia LI ; Chaoni CAI ; Zixin LIU ; Xichang TANG ; Lin QU ; Yuan WU ; Pingyun WU ; Yao DUAN ; Pengfei SHE
Journal of Central South University(Medical Sciences) 2023;48(6):868-876
OBJECTIVES:
Staphylococcus epidermidis (S. epidermidis) is a Gram-positive opportunistic pathogen that often causes hospital infections. With the abuse of antibiotics, the resistance of S. epidermidis gradually increases, and drug repurposing has become a research hotspot in the treating of refractory drug-resistant bacterial infections. This study aims to study the antimicrobial and antibiofilm effects of simeprevir, an antiviral hepatitis drug, on S. epidermidis in vitro.
METHODS:
The micro-dilution assay was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of simeprevir against S. epidermidis. Crystal violet staining assay was used to detect the biofilm inhibitory effect of simeprevir. The antimicrobial activity of simeprevir against S. epidermidis and its biofilm were explored by SYTO9/PI fluorescent staining. The combined effect between simeprevir and gentamycin was assessed by checkerboard assay and was confirmed by time-inhibition assay.
RESULTS:
Simeprevir showed significant antimicrobial effects against S. epidermidis type strains and clinical isolates with the MIC and MBC at 2-16 μg/mL and 4-32 μg/mL, respectively. The antimicrobial effects of simeprevir were confirmed by SYTO9/PI staining. Simeprevir at MIC could significantly inhibit and break the biofilm on cover slides. Similarly, simeprevir also significantly inhibit the biofilm formation on the surface of urine catheters either in TSB [from (0.700±0.020) to (0.050±0.004)] (t=54.03, P<0.001), or horse serum [from (1.00±0.02) to (0.13±0.01)] (t=82.78, P<0.001). Synergistic antimicrobial effect was found between simeprevir and gentamycin against S. epidermidis with the fractional inhibitory concentration index of 0.5.
CONCLUSIONS
Simeprevir shows antimicrobial effect and anti-biofilm activities against S. epidermidis.
Humans
;
Simeprevir
;
Antiviral Agents
;
Anti-Bacterial Agents/pharmacology*
;
Cross Infection
;
Gentamicins
3.Protective effect of brain-derived neurotrophic factor on high dose glutamate-injured rat cortical neurons and its mechanism
Pingyun QIAO ; Jiangbao ZHOU ; Xiaoxiao XU ; Peng WU ; Huichun ZHANG
Journal of Third Military Medical University 2003;0(14):-
Objective To explore the protective effect of brain-derived neurotrophic factor (BDNF) on cultured rat cortical neurons against glutamate (Glu)-induced injury and its mechanism. Methods Cortical neurons were primarily cultured from 1-day-old newborn Sprague-Dawley rats and then cultured for 7 d. The cortical neurons were divided randomly into 3 groups: control group,Glu group and BDNF group after identified with neuron-specific enolase (NSE) immunostaining. The cells of BDNF were treated with 50 ng/ml BDNF on day 6 for 24 h followed by cultured with 50 ?mol/L Glu for 0.5 h. While,the cells of Glu group were cultured with 50 ?mol/L Glu for 0.5 h on day 7. The control cells received no such treatments. On day 8,cell viability were determined by the colorimetric MTT assay. The morphological features of the neuron cells were observed under AO/EB fluorescence microscopy. Expressions of p75NTR,JNK and ERK were observed using Western blot analysis. Results On day 8,the primary cortical neurons grew well. BDNF protected cortical neural cells from Glu injury. Cell viability of BDNF group was (1.14?0.06),significantly higher than that of Glu group (0.72?0.10,P

Result Analysis
Print
Save
E-mail