1.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
2.Inner Ear Delivery of Polyamino Acid Nanohydrogels Loaded with Dexamethasone
Pingping AI ; Lidong ZHAO ; Zhaohui TANG ; Chaoliang HE ; Xuesi CHEN ; Shiming YANG ; Nan WU
Medical Journal of Peking Union Medical College Hospital 2025;16(2):370-378
To develop a novel polyamino acid-based nanohydrogel drug delivery system for dexamethasone to enhance its delivery efficiency to the inner ear. A fluorescein-labeled polyglutamic acid-based polyamino acid dexamethasone nanohydrogel was synthesized, and its gelation time was measured. The hydrogel was surgically injected into the round window niche of guinea pigs to determine its degradation time in the middle ear cavity in vivo. The safety, pharmacokinetics, and distribution patterns of dexamethasone in the inner ear were evaluated. The hydrogel exhibited a gelation time of 80 seconds in a 37℃ water bath. In vivo, the hydrogel was almost completely degraded within 7 days in the middle ear cavity of guinea pigs. Transient hearing loss was observed one day after administration, but hearing gradually returned to normal over time. No significant cytotoxicity, vestibular stimulation signs, or pathological abnormalities in spiral ganglion cells were observed. Histopathological examination revealed no significant inflammatory reactions. Pharmacokinetic analysis demonstrated sustained drug release and prolonged dexamethasone activity. Immunofluorescence staining confirmed the distribution of dexamethasone in both the cochlea and vestibular organs. The polyamino acid nanohydrogel exhibits excellent injectability and biodegradability, representing a safe and effective drug delivery system for the inner ear.
3.Association between dietary quality and overweight / obesity among primary school students
HE Yiyang ; WANG Bilian ; ZHANG Pingping ; LI Li
Journal of Preventive Medicine 2025;37(11):1099-1102
Objective:
To investigate the association between dietary quality and overweight / obesity among primary school students, so as to provide a basis for the prevention and control of childhood obesity.
Methods:
In September 2022, third-grade students from six primary schools in Ningbo City, Zhejiang Province were selected by a random cluster sampling method. Data on gender, age, height, and weight were collected through questionnaire surveys and physical examinations. Body mass index (BMI) was calculated, and overweight and obesity were determined using gender- and age-specific BMI cut-off points. The Chinese dietary quality questionnaires was administered to assess the intake of health-promoting and restricted foods over the past 24 hours, thereby evaluating overall dietary quality. A multivariate logistic regression model was used to analyze the association between dietary quality and overweight / obesity among primary school students.
Results:
A total of 1 375 primary school students were included, comprising 722 (52.51%) boys and 653 (47.49%) girls, with a mean age of (8.47±0.30) years. Among them, 165 (12.00%) were overweight and 171 (12.44%) were obese. The score for health-promoting foods was (4.29±2.27) points. The median score of restricted foods was 2.00 (interquartile range, 3.00) points. The total dietary quality score was (10.84±2.42) points. Multivariable logistic regression analysis indicated that the restricted food score was positively associated with overweight (OR=1.073, 95%CI: 1.002-1.148), while the total dietary quality score was negatively associated with overweight (OR=0.911, 95%CI: 0.851-0.976). However, no statistically significant associations were observed between the health-promoting food score and overweight or obesity (both P>0.05), nor between the restricted food score or total dietary quality score and obesity (both P>0.05).
Conclusion
A higher intake of restricted foods was associated with an increased risk of overweight, while a better dietary quality was associated with a decreased risk of overweight among primary school students.
4.Evidence that metformin promotes fibrosis resolution via activating alveolar epithelial stem cells and FGFR2b signaling.
Yuqing LV ; Yanxia ZHANG ; Xueli GUO ; Baiqi HE ; Haibo XU ; Ming XU ; Lihui ZOU ; Handeng LYU ; Jin WU ; Pingping ZENG ; Saverio BELLUSCI ; Xuru JIN ; Chengshui CHEN ; Young-Chang CHO ; Xiaokun LI ; Jin-San ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4711-4729
Idiopathic pulmonary fibrosis (IPF) is a progressive disease lacking effective therapy. Metformin, an antidiabetic medication, has shown promising therapeutic properties in preclinical fibrosis models; however, its precise cellular targets and associated mechanisms in fibrosis resolution remain incompletely defined. Most research on metformin's effects has focused on mesenchymal and inflammatory responses with limited attention to epithelial cells. In this study, we utilized Sftpc lineage-traced and Fgfr2b conditional knockout mice, along with BMP2/PPARγ and AMPK inhibitors, to explore metformin's impact on alveolar epithelial cells in a bleomycin-induced pulmonary fibrosis model and cell culture. We found that metformin increased the proliferation and differentiation of alveolar type 2 (AT2) cells, particularly the recently identified injury-activated alveolar progenitors (IAAPs)-a subpopulation characterized by low SFTPC expression but enriched for PD-L1. Single-cell RNA sequencing revealed a reduction in apoptosis among mature AT2 cells. Interestingly, metformin's therapeutic effects were not significantly affected by BMP2 or PPARγ inhibition, which blocked the lipogenic differentiation of myofibroblasts. However, Fgfr2b deletion in Sftpc lineage cells significantly impaired metformin's ability to promote fibrosis resolution, a process linked to AMPK signaling. In conclusion, metformin alleviates fibrosis by directly activating AT2 cells, especially the IAAPs, through a mechanism that involves AMPK and FGFR2b signaling, but is largely independent of BMP2/PPARγ pathways.
5.Progress in copper metabolic homeostasis and cuproptosis in cardiovas-cular diseases
Pingping HE ; Yan WANG ; Bei SHI
Chinese Journal of Pathophysiology 2024;40(9):1744-1750
As an essential trace element,copper has major effects on cell metabolism.Therefore,interfering with the balance of copper metabolism in such a way that leads to copper deficiency or excess causes disease.It has been reported that copper metabolic imbalance,or cuproptosis,affects the development of cardiovascular diseases by mediating cellular oxidative stress and vascular remodeling and by interfering with mitochondrial functions.Importantly,copper che-lators,copper ion carriers,small molecule inhibitors of copper chaperones,and dietary copper can alleviate cardiovascu-lar diseases caused by copper metabolic imbalance or cuproptosis.In this review,we comprehensively considered the mo-lecular mechanisms of copper metabolic homeostasis and cuproptosis,as well as their significance and therapeutic advances in cardiovascular diseases,aiming to provide insights on therapeutically targeting copper metabolic homeostasis and cupro-ptosis as a novel strategy for managing cardiovascular diseases.
6.Improvement of sepsis-related acute lung injury through Naringin by regulating TGF-β1/Smad2 signaling pathway
Pingping HE ; Yu DENG ; Yuhan WANG ; Zhen ZHANG ; Hao WANG ; Guangtao PAN
International Journal of Traditional Chinese Medicine 2024;46(4):465-470
Objective:To investigate the protective effect of naringenin on acute lung injury related with sepsis; To discuss its possible mechanism.Methods:Totally 30 male SD rats were randomly divided into sham-operation group, model group, naringin low-, medium- and high-dosage groups, with 6 rats in each group. The sepsis-related acute lung injury model was established by cecal ligation and puncture in all groups except the sham-operation group. After modeling, naringin low-, medium- and high-dosage groups were given naringin 20 mg/kg, 40 mg/kg and 80 mg/kg, respectively for gavage, while the sham-operation group and the model group were given the same volume of distilled water by gavage, once a day, for 2 days. Pathological changes in lung tissue were observed using HE staining. The levels of 1L-1, IL-6 and IL-18 in bronchoalveolar lavage fluid (BALF) were measured by ELISA; the expression of TNF-α in lung tissue was detected by immunofluorescence histopathology; the expressions of TGF-β1, TGF-βR1 and Smad2 were detected by Western Blot. An agonist group and a naringin plus agonist group were set up, with 6 mice in each group, and the expressions of TGF-β1 and Smad2 protein in the lung tissue of each group were detected by immunohistochemical staining to verify the effect of naringin on the expressions of TGF-β1 and Smad2 protein.Results:Compared with the model group, the pathological injury of lung tissue in naringin groups were obviously alleviated, and the levels of IL-1β, IL-6 and IL-18 in BALF decreased ( P<0.01), the protein expressions of TNF-α, TGF-β1, TGF-βR1 and Smad2 in lung tissue decreased ( P<0.01 or P<0.05). Further verification found that the expressions of TGF-β1 and Smad2 in the agonist group increased ( P<0.01), while the expressions of TGF-β1 and Smad2 in the naringin agonist group decreased ( P<0.01). Conclusion:Naringin can reduce the inflammatory response in the lung of the rats to protect against sepsis-related acute lung injury, and its protective effect could be related to the inhibition of the TGF-β1/Smad2 signaling pathway.
7.Role of O-sialoglycoprotein endopeptidase in hepatic ischemia-reperfusion injury in mice: relationship with oxidative stress
Tengjuan ZHANG ; Wanqing ZHOU ; Cheng CHEN ; Qian ZHANG ; Yanfei ZHAO ; Dehao HE ; Zhi YE ; Pingping XIA
Chinese Journal of Anesthesiology 2024;44(1):85-90
Objective:To evaluate the role of O-sialoglycoprotein endopeptidase (OSGEP) in hepatic ischemia-reperfusion injury (HIRI) and the relationship with oxidative stress in mice.Methods:Experiment Ⅰ Twenty-four SPF healthy male C57BL/6 mice, 12 wild-type and 12 OSGEP knockdown, aged 6-8 weeks, weighing 18-22 g, were divided into 4 groups ( n=6 each) by the random number table method: wild-type shamoperation group (Sham group), wild-type HIRI group (HIRI group), OSGEP knockdown+ sham operation group (Sham+ KD group) and OSGEP knockdown+ HIRI group (HIRI+ KD group). Ischemia-reperfusion model was prepared by blocking the hepatic artery and portal vein for 60 min followed by reperfusion in anesthetized animals, the blood vessels were only exposed without occlusion in Sham group and Sham+ KD group, and the blood vessels were clamped for 60 min followed by reperfusion in HIRI group and HIRI+ KD group. The mice were sacrificed after 6-h reperfusion to extract liver tissue samples for microscopic examination of histopathological changes (with an optical microscope after HE staining) which were evaluated using Suzuki score and for determination of the serum concentrations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), level of reactive oxygen species (ROS) (using the DCFH-DA fluorescent probe method), contents of malondialdehyde (MDA) and glutathione(GSH) in liver tissues (using a colorimetric method) and expression of OSGEP (using Western blot). Experiment Ⅱ The well-growing AML12 cells were divided into 4 groups ( n=30 each) using a random number table method: control group (C group), oxygen-glucose deprivation/restoration (OGD/R) group, OGD/R+ OSGEP knockdown group (OGD/R+ KD group), and OGD/R+ OSGEP knockdown negative control group (OGD/R+ NC group). Group C was cultured under normal conditions. Group OGD/R was subjected to O 2-glucose deprivation for 6 h followed by restoration of O 2-glucose supply for 24 h in OGD/R group. In OGD/R+ KD group, stable transfection of AML12 cells with OSGEP knockdown was performed prior to the experiment, and the other procedures were the same as those previously described. The cell survival rate was measured by the CCK-8 assay, the release of lactate dehydrogenase (LDH) was measured, the DCFH-DA method was used to detect the levels of ROS, and the contents of MDA and GSH were determined using a colorimetric method. Results:Experiment Ⅰ Compared with Sham group, the expression of OSGEP was significantly down-regulated, the serum concentrations of AST and ALT, Suzuki score, levels of ROS and content of MDA were increased, and the GSH content was decreased in HIRI group ( P<0.05), and no significant change was found in each parameter in Sham+ KD group ( P>0.05). Compared with HIRI group, the serum concentrations of AST and ALT, Suzuki score, levels of ROS and content of MDA were significantly increased, and the GSH content was decreased in HIRI+ KD group ( P<0.05). Experiment Ⅱ Compared with group C, the expression of OSGEP was significantly down-regulated, the cell survival rate and GSH content were decreased, and the release of LDH, levels of ROS and content of MDA were increased in group OGD/R ( P<0.05). Compared with OGD/R group, the cell survival rate and GSH content were significantly decreased, and the release of LDH, levels of ROS and content of MDA were increased in OGD/R+ KD group ( P<0.05), and no significant change was found in each parameter in OGD/R+ NC group ( P>0.05). Conclusions:OSGEP plays an endogenous protective role in HIRI by inhibiting oxidative stress in mice.
8.Gain deeper insights into traditional Chinese medicines using multidimensional chromatography combined with chemometric approaches.
Xinyue YANG ; Pingping ZENG ; Jin WEN ; Chuanlin WANG ; Liangyuan YAO ; Min HE
Chinese Herbal Medicines 2024;16(1):27-41
Traditional Chinese medicines (TCMs) possess a rich historical background, unique theoretical framework, remarkable therapeutic efficacy, and abundant resources. However, the modernization and internationalization of TCMs have faced significant obstacles due to their diverse ingredients and unknown mechanisms. To gain deeper insights into the phytochemicals and ensure the quality control of TCMs, there is an urgent need to enhance analytical techniques. Currently, two-dimensional (2D) chromatography, which incorporates two independent separation mechanisms, demonstrates superior separation capabilities compared to the traditional one-dimensional (1D) separation system when analyzing TCMs samples. Over the past decade, new techniques have been continuously developed to gain actionable insights from complex samples. This review presents the recent advancements in the application of multidimensional chromatography for the quality evaluation of TCMs, encompassing 2D-gas chromatography (GC), 2D-liquid chromatography (LC), as well as emerging three-dimensional (3D)-GC, 3D-LC, and their associated data-processing approaches. These studies highlight the promising potential of multidimensional chromatographic separation for future phytochemical analysis. Nevertheless, the increased separation capability has resulted in higher-order data sets and greater demands for data-processing tools. Considering that multidimensional chromatography is still a relatively nascent research field, further hardware enhancements and the implementation of chemometric methods are necessary to foster its robust development.
9.Longitudinal extrauterine growth restriction in extremely preterm infants: current status and prediction model
Xiaofang HUANG ; Qi FENG ; Shuaijun LI ; Xiuying TIAN ; Yong JI ; Ying ZHOU ; Bo TIAN ; Yuemei LI ; Wei GUO ; Shufen ZHAI ; Haiying HE ; Xia LIU ; Rongxiu ZHENG ; Shasha FAN ; Li MA ; Hongyun WANG ; Xiaoying WANG ; Shanyamei HUANG ; Jinyu LI ; Hua XIE ; Xiaoxiang LI ; Pingping ZHANG ; Hua MEI ; Yanju HU ; Ming YANG ; Lu CHEN ; Yajing LI ; Xiaohong GU ; Shengshun QUE ; Xiaoxian YAN ; Haijuan WANG ; Lixia SUN ; Liang ZHANG ; Jiuye GUO
Chinese Journal of Neonatology 2024;39(3):136-144
Objective:To study the current status of longitudinal extrauterine growth restriction (EUGR) in extremely preterm infants (EPIs) and to develop a prediction model based on clinical data from multiple NICUs.Methods:From January 2017 to December 2018, EPIs admitted to 32 NICUs in North China were retrospectively studied. Their general conditions, nutritional support, complications during hospitalization and weight changes were reviewed. Weight loss between birth and discharge > 1SD was defined as longitudinal EUGR. The EPIs were assigned into longitudinal EUGR group and non-EUGR group and their nutritional support and weight changes were compared. The EPIs were randomly assigned into the training dataset and the validation dataset with a ratio of 7∶3. Univariate Cox regression analysis and multiple regression analysis were used in the training dataset to select the independent predictive factors. The best-fitting Nomogram model predicting longitudinal EUGR was established based on Akaike Information Criterion. The model was evaluated for discrimination efficacy, calibration and clinical decision curve analysis.Results:A total of 436 EPIs were included in this study, with a mean gestational age of (26.9±0.9) weeks and a birth weight of (989±171) g. The incidence of longitudinal EUGR was 82.3%(359/436). Seven variables (birth weight Z-score, weight loss, weight growth velocity, the proportion of breast milk ≥75% within 3 d before discharge, invasive mechanical ventilation ≥7 d, maternal antenatal corticosteroids use and bronchopulmonary dysplasia) were selected to establish the prediction model. The area under the receiver operating characteristic curve of the training dataset and the validation dataset were 0.870 (95% CI 0.820-0.920) and 0.879 (95% CI 0.815-0.942), suggesting good discrimination efficacy. The calibration curve indicated a good fit of the model ( P>0.05). The decision curve analysis showed positive net benefits at all thresholds. Conclusions:Currently, EPIs have a high incidence of longitudinal EUGR. The prediction model is helpful for early identification and intervention for EPIs with higher risks of longitudinal EUGR. It is necessary to expand the sample size and conduct prospective studies to optimize and validate the prediction model in the future.
10.PGRMC1-mediated autophagy decreases the sensitivity of hepatocellular carcinoma cells to 125I particle irradiation
Pingping LIU ; Chenyu WANG ; Yunhua XIAO ; Chuang HE ; Junru XIONG ; Liangyu DENG ; Xuequan HUANG
Journal of Army Medical University 2024;46(9):1015-1023
Objective To investigate the effect of progesterone receptor membrane component 1(PGRMC1)mediated autophagy on the sensitivity of liver cancer cells to 125I particles irradiation.Methods Hepatoma cell lines Huh7 and LM3 were exposed to different doses(0,2,4,6 and 8 Gy)of 125I particles,and cell autophagy was observed by transmission electron microscopy(TEM).Then,autophagy inhibitor chloroquine(CQ),agonist rapamycin(Rapa),and PGRMC1 inhibitor AG-205 were used respectively to verify that PGRMC1-mediated autophagy plays a key role in the sensitivity of hepatocellular carcinoma cells to 125I particle irradiation.Cell proliferation,colony formation and apoptosis were detected by CCK-8 assay,clonal formation test and flow cytometry,respectively.The expression levels of PGRMC1,microtubule-associated protein light chain 3-Ⅰ(LC3-Ⅰ),LC3-Ⅱ and p62 were detected by Western blotting.Results Different doses of 125I particles irradiation significantly decreased the proliferation and clonogenesis of Huh7 and LM3 cells(P<0.05),and increased the apoptotic cells(P<0.01),in a dose-dependent manner.Compared with the 0 Gy group,the ratio of LC3-Ⅱ/LC3-Ⅰ in Huh7 and LM3 cells was obviously increased,and the expression of p62 was significantly down-regulated in the 6 Gy group.The proliferation capacity and clonal formation ability of Huh7 and LM3 cells were decreased significantly,and their apoptotic cells were increased notably in the 6 Gy+CQ group than the 6 Gy group,while the above results were on the contrary in the 6 Gy+Rapa group.The 6 Gy+AG205 group had notably decreased LC3-Ⅱ/LC3-Ⅰ ratio in the Huh7 and LM3 cells,up-regulated p62 expression,reduced cell proliferation capacity and clone formation ability,and enhanced cell apoptosis when compared with the 6 Gy group,and the above results of the 6 Gy+PGRMC1 group were opposite.Conclusion Increment of PGRMC1 induced by 125I irradiation can promote autophagy,increase the proliferation and clonogenesis,and reduce the apoptosis in hepatocellular carcinoma cells.


Result Analysis
Print
Save
E-mail