1.An assessment model for efficacy of autologous CD19 chimeric antigen receptor T-cell therapy and relapse or refractory diffuse large B-cell lymphoma risk.
Bin XUE ; Yifan LIU ; Min ZHANG ; Gangfeng XIAO ; Xiu LUO ; Lili ZHOU ; Shiguang YE ; Yan LU ; Wenbin QIAN ; Li WANG ; Ping LI ; Aibin LIANG
Chinese Medical Journal 2025;138(1):108-110
2.Transcriptome sequencing reveals molecular mechanism of seed dormancy release of Zanthoxylum nitidum.
Chang-Qian QUAN ; Dan-Feng TANG ; Jian-Ping JIANG ; Yan-Xia ZHU
China Journal of Chinese Materia Medica 2025;50(1):102-110
The transcriptome sequencing based on Illumina Novaseq 6000 Platform was performed with the untreated seed embryo(DS), stratified seed embryo(SS), and germinated seed embryo(GS) of Zanthoxylum nitidum, aiming to explore the molecular mechanism regulating the seed dormancy and germination of Z. nitidum and uncover key differentially expressed genes(DEGs). A total of 61.41 Gb clean data was obtained, and 86 386 unigenes with an average length of 773.49 bp were assembled. A total of 29 290 DEGs were screened from three comparison groups(SS vs DS, GS vs SS, and GS vs DS), and these genes were annotated on 134 Kyoto Encyclopedia of Genes and Genomes(KEGG) pathways. KEGG enrichment analysis revealed that the plant hormone signal transduction pathway is the richest pathway, containing 226 DEGs. Among all DEGs, 894 transcription factors were identified, which were distributed across 34 transcription factor families. These transcription factors were also mainly concentrated in plant hormone signal transduction and mitogen-activated protein kinase(MAPK) signaling pathways. Further real-time quantitative polymerase chain reaction(RT-qPCR) validation of 12 DEGs showed that the transcriptome data is reliable. During the process of seed dormancy release and germination, a large number of DEGs involved in polysaccharide degradation, protein synthesis, lipid metabolism, and hormone signal transduction were expressed. These genes were involved in multiple metabolic pathways, forming a complex regulatory network for dormancy and germination. This study lays a solid foundation for analyzing the molecular mechanisms of seed dormancy and germination of Z. nitidum.
Zanthoxylum/metabolism*
;
Plant Dormancy/genetics*
;
Seeds/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Transcriptome
;
Gene Expression Profiling
;
Germination
;
Transcription Factors/metabolism*
;
Plant Growth Regulators/genetics*
;
Signal Transduction
3.Research progress on prevention and treatment of hepatocellular carcinoma with traditional Chinese medicine based on gut microbiota.
Rui REN ; Xing YANG ; Ping-Ping REN ; Qian BI ; Bing-Zhao DU ; Qing-Yan ZHANG ; Xue-Han WANG ; Zhong-Qi JIANG ; Jin-Xiao LIANG ; Ming-Yi SHAO
China Journal of Chinese Materia Medica 2025;50(15):4190-4200
Hepatocellular carcinoma(HCC), the third leading cause of cancer-related death worldwide, is characterized by high mortality and recurrence rates. Common treatments include hepatectomy, liver transplantation, ablation therapy, interventional therapy, radiotherapy, systemic therapy, and traditional Chinese medicine(TCM). While exhibiting specific advantages, these approaches are associated with varying degrees of adverse effects. To alleviate patients' suffering and burdens, it is crucial to explore additional treatments and elucidate the pathogenesis of HCC, laying a foundation for the development of new TCM-based drugs. With emerging research on gut microbiota, it has been revealed that microbiota plays a vital role in the development of HCC by influencing intestinal barrier function, microbial metabolites, and immune regulation. TCM, with its multi-component, multi-target, and multi-pathway characteristics, has been increasingly recognized as a vital therapeutic treatment for HCC, particularly in patients at intermediate or advanced stages, by prolonging survival and improving quality of life. Recent global studies demonstrate that TCM exerts anti-HCC effects by modulating gut microbiota, restoring intestinal barrier function, regulating microbial composition and its metabolites, suppressing inflammation, and enhancing immune responses, thereby inhibiting the malignant phenotype of HCC. This review aims to elucidate the mechanisms by which gut microbiota contributes to the development and progression of HCC and highlight the regulatory effects of TCM, addressing the current gap in systematic understanding of the "TCM-gut microbiota-HCC" axis. The findings provide theoretical support for integrating TCM with western medicine in HCC treatment and promote the transition from basic research to precision clinical therapy through microbiota-targeted drug development and TCM-based interventions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Carcinoma, Hepatocellular/microbiology*
;
Liver Neoplasms/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional
4.Diagnosis of coronary artery lesions in children based on Z-score regression model.
Yong WANG ; Jia-Ying JIANG ; Yan DENG ; Bo LI ; Ping SHUAI ; Xiao-Ping HU ; Yin-Yan ZHANG ; Han WU ; Lu-Wei YE ; Qian PENG
Chinese Journal of Contemporary Pediatrics 2025;27(2):176-183
OBJECTIVES:
To construct a Z-score regression model for coronary artery diameter based on echocardiographic data from children in Sichuan Province and to establish a Z-score calculation formula.
METHODS:
A total of 744 healthy children who underwent physical examinations at Sichuan Provincial People's Hospital from January 2020 to December 2022 were selected as the modeling group, while 251 children diagnosed with Kawasaki disease at the same hospital from January 2018 to December 2022 were selected as the validation group. Pearson correlation analysis was conducted to analyze the relationships between coronary artery diameter values and age, height, weight, and body surface area. A regression model was constructed using function transformation to identify the optimal regression model and establish the Z-score calculation formula, which was then validated.
RESULTS:
The Pearson correlation analysis showed that the correlation coefficients for the diameters of the left main coronary artery, left anterior descending artery, left circumflex artery, and right coronary artery with body surface area were 0.815, 0.793, 0.704, and 0.802, respectively (P<0.05). Among the constructed regression models, the power function regression model demonstrated the best performance and was therefore chosen as the optimal model for establishing the Z-score calculation formula. Based on this Z-score calculation formula, the detection rate of coronary artery lesions was found to be 21.5% (54/251), which was higher than the detection rate based on absolute values of coronary artery diameter. Notably, in the left anterior descending and left circumflex arteries, the detection rate of coronary artery lesions using this Z-score calculation formula was higher than that of previous classic Z-score calculation formulas.
CONCLUSIONS
The Z-score calculation formula established based on the power function regression model has a higher detection rate for coronary artery lesions, providing a strong reference for clinicians, particularly in assessing coronary artery lesions in children with Kawasaki disease.
Humans
;
Male
;
Female
;
Child, Preschool
;
Child
;
Coronary Artery Disease/diagnostic imaging*
;
Infant
;
Mucocutaneous Lymph Node Syndrome
;
Regression Analysis
;
Coronary Vessels/diagnostic imaging*
;
Echocardiography
;
Adolescent
5.Clinical analysis of nutritional components in children with acute leukemia.
Li-Xia SHI ; Ming-Zhong ZHAO ; Fei-Fei WANG ; Yu-Qian XING ; Hong-Yan JI ; Ping ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(3):300-307
OBJECTIVES:
To assess the changes in body composition and nutritional risks faced by children with different stages of acute leukemia (AL).
METHODS:
Bioelectrical impedance analysis combined with anthropometric measurements was used to detect body composition. This prospective study was conducted from August 2023 to July 2024 at Shandong Provincial Hospital, examining the body composition and physical balance of children with various stages of AL and healthy children.
RESULTS:
The non-fat components of children with AL and healthy children both showed a linear increase with age. In the younger age group, there were no significant differences in body composition between children with AL and healthy children. However, in the older age group, the body composition of children undergoing chemotherapy for AL was significantly lower than that of healthy children (P<0.05), and muscle mass recovered first after the completion of AL chemotherapy. The proportion of children with increased trunk fat in AL children who completed chemotherapy was significantly lower than that in healthy children (P<0.05), while the incidence rate of severe left-right imbalance in body composition was significantly higher (P<0.05). Muscle distribution in children with AL primarily showed insufficient limb and overall muscle mass, whereas healthy children mainly exhibited insufficient upper limb muscle mass.
CONCLUSIONS
The body composition of children with AL varies at different treatment stages, indicating that nutritional status is affected by both the disease itself and the treatment. Early screening can provide a basis for reasonable nutritional intervention.
Humans
;
Child
;
Male
;
Female
;
Child, Preschool
;
Body Composition
;
Prospective Studies
;
Adolescent
;
Leukemia/metabolism*
;
Infant
;
Nutritional Status
;
Acute Disease
;
Electric Impedance
7.Suppression of Hepatocellular Carcinoma through Apoptosis Induction by Total Alkaloids of Gelsemium elegans Benth.
Ming-Jing JIN ; Yan-Ping LI ; Huan-Si ZHOU ; Yu-Qian ZHAO ; Xiang-Pei ZHAO ; Mei YANG ; Mei-Jing QIN ; Chun-Hua LU
Chinese journal of integrative medicine 2025;31(9):792-801
OBJECTIVE:
To evaluate the anti-hepatocellular carcinoma (HCC) activity of total alkaloids from Gelsemium elegans Benth. (TAG) in vivo and in vitro and to elucidate their potential mechanisms of action through transcriptomic analysis.
METHODS:
TAG extraction was conducted, and the primary components were quantified using high-performance liquid chromatography (HPLC). The effects of TAG (100, 150, and 200 µg/mL) on various tumor cells, including SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116, were assessed. Effects of TAG on HCC proliferation and apoptosis were detected by colony formation assays and cell stainings. Caspase-3, Bcl-2, and Bax protein levels were detected by Western blotting. In vivo, a tumor xenograft model was developed using H22 cells. Totally 40 Kunming mice were randomly assigned to model, cyclophosphamide (20 mg/kg), TAG low-dose (TAG-L, 0.5 mg/kg), and TAG high-dose (TAG-H, 1 mg/kg) groups, with 10 mice in each group. Tumor volume, body weight, and tumor weight were recorded and compared during 14-day treatment. Immune organ index were calculated. Tissue changes were oberseved by hematoxylin and eosin staining and immunohistochemistry. Additionally, transcriptomic and metabolomic analyses, as well as quatitative real-time polymerase chain reaction (RT-qPCR), were performed to detect mRNA and metabolite expressions.
RESULTS:
HPLC successfully identified the components of TAG extraction. Live cell imaging and analysis, along with cell viability assays, demonstrated that TAG inhibited the proliferation of SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116 cells. Colony formation assays, Hoechst 33258 staining, Rhodamine 123 staining, and Western blotting revealed that TAG not only inhibited HCC proliferation but also promoted apoptosis (P<0.05). In vivo experiments showed that TAG inhibited the growth of solid tumors in HCC in mice (P<0.05). Transcriptomic analysis and RT-qPCR indicated that the inhibition of HCC by TAG was associated with the regulation of the key gene CXCL13.
CONCLUSION
TAG inhibits HCC both in vivo and in vitro, with its inhibitory effect linked to the regulation of the key gene CXCL13.
Animals
;
Apoptosis/drug effects*
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Humans
;
Alkaloids/therapeutic use*
;
Gelsemium/chemistry*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Mice
;
Xenograft Model Antitumor Assays
8.Long-term outcomes of laparoscopic gastrectomy for locally advanced gastric cancer with serosa-invasion
Ping′ang LI ; Fan ZHANG ; Zhengyan LI ; Yan SHI ; Feng QIAN ; Yongliang ZHAO ; Jun CHEN ; Chenjun TAN ; Zongwen WANG ; Yan WEN ; Peiwu YU
Chinese Journal of Surgery 2024;62(8):744-750
Objective:To evaluate the long-term outcomes and prognostic factors of locally advanced gastric cancer with serosa-invasion.Methods:This study is a retrospective cohort study. The clinical and pathological data of 495 patients with locally advanced gastric cancer with serosa-invasion who underwent laparoscopic radical gastrectomy in Department of General Surgery, the First Hospital Affiliated to Army Medical University from October 2012 to October 2018 was analyzed retrospectively. There were 356 males and 139 females with an age ( M(IQR)) of 59 (16) years (range: 18 to 75 years). Observation indicators included postoperative results and long-term prognosis. The survival curve was drawn by the Kaplan-Meier method. Univariate and multivariate prognostic analysis was performed using the Cox proportional hazards model. Results:Among the 495 patients, a total of 57 patients (11.5%) were lost to follow-up, with a follow-up time of 89 (40) months (range: 23 to 134 months). The 5-year disease-free survival rate (DFS) and the 5-year overall survival rate (OS) were 56.0% and 58.2%, respectively. The 5-year DFS for patients with stage ⅡB, ⅢA, ⅢB, ⅢC were 71.2%, 60.5%, 51.6%, 33.3%, respectively. The 5-year OS for patients with stage ⅡB, ⅢA, ⅢB, ⅢC were 71.2%, 62.2%, 54.1%, 39.3%, respectively. Multivariate analysis showed that age >65 years (DFS: HR=1.402, 95% CI: 1.022 to 1.922, P=0.036; OS: HR=1.461, 95% CI: 1.057 to 2.019, P=0.022), lymph node dissection number less than 25 (DFS: HR=1.348, 95% CI: 1.019 to 1.779, P=0.036; OS: HR=1.376, 95% CI: 1.035 to 1.825, P=0.028), pathological stage Ⅲ (DFS: HR=2.131, 95% CI: 1.444 to 3.144, P<0.01; OS: HR=2.079, 95% CI: 1.406 to 3.074, P<0.01), and no postoperative chemotherapy (DFS: HR=3.127, 95% CI: 2.377 to 4.113, P<0.01; OS: HR=3.768, 95% CI: 2.828 to 5.020, P<0.01) were independent prognostic factors for the decrease in DFS and OS rates. Conclusions:Laparoscopic radical gastrectomy for locally advanced gastric cancer with serosa-invasion could achieve satisfactory long-term oncological outcomes. More lymph node dissection and standardized postoperative adjuvant chemotherapy are expected to further improve the prognosis of patients with locally advanced gastric cancer with serous invasion after laparoscopic radical surgery.
9.Long-term outcomes of laparoscopic gastrectomy for locally advanced gastric cancer with serosa-invasion
Ping′ang LI ; Fan ZHANG ; Zhengyan LI ; Yan SHI ; Feng QIAN ; Yongliang ZHAO ; Jun CHEN ; Chenjun TAN ; Zongwen WANG ; Yan WEN ; Peiwu YU
Chinese Journal of Surgery 2024;62(8):744-750
Objective:To evaluate the long-term outcomes and prognostic factors of locally advanced gastric cancer with serosa-invasion.Methods:This study is a retrospective cohort study. The clinical and pathological data of 495 patients with locally advanced gastric cancer with serosa-invasion who underwent laparoscopic radical gastrectomy in Department of General Surgery, the First Hospital Affiliated to Army Medical University from October 2012 to October 2018 was analyzed retrospectively. There were 356 males and 139 females with an age ( M(IQR)) of 59 (16) years (range: 18 to 75 years). Observation indicators included postoperative results and long-term prognosis. The survival curve was drawn by the Kaplan-Meier method. Univariate and multivariate prognostic analysis was performed using the Cox proportional hazards model. Results:Among the 495 patients, a total of 57 patients (11.5%) were lost to follow-up, with a follow-up time of 89 (40) months (range: 23 to 134 months). The 5-year disease-free survival rate (DFS) and the 5-year overall survival rate (OS) were 56.0% and 58.2%, respectively. The 5-year DFS for patients with stage ⅡB, ⅢA, ⅢB, ⅢC were 71.2%, 60.5%, 51.6%, 33.3%, respectively. The 5-year OS for patients with stage ⅡB, ⅢA, ⅢB, ⅢC were 71.2%, 62.2%, 54.1%, 39.3%, respectively. Multivariate analysis showed that age >65 years (DFS: HR=1.402, 95% CI: 1.022 to 1.922, P=0.036; OS: HR=1.461, 95% CI: 1.057 to 2.019, P=0.022), lymph node dissection number less than 25 (DFS: HR=1.348, 95% CI: 1.019 to 1.779, P=0.036; OS: HR=1.376, 95% CI: 1.035 to 1.825, P=0.028), pathological stage Ⅲ (DFS: HR=2.131, 95% CI: 1.444 to 3.144, P<0.01; OS: HR=2.079, 95% CI: 1.406 to 3.074, P<0.01), and no postoperative chemotherapy (DFS: HR=3.127, 95% CI: 2.377 to 4.113, P<0.01; OS: HR=3.768, 95% CI: 2.828 to 5.020, P<0.01) were independent prognostic factors for the decrease in DFS and OS rates. Conclusions:Laparoscopic radical gastrectomy for locally advanced gastric cancer with serosa-invasion could achieve satisfactory long-term oncological outcomes. More lymph node dissection and standardized postoperative adjuvant chemotherapy are expected to further improve the prognosis of patients with locally advanced gastric cancer with serous invasion after laparoscopic radical surgery.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail