1.2-(2-Phenylethyl)chromones from agarwood of Aquilaria agallocha and their inhibitory activity against KRAS mutant NSCLC
Bao-juan XING ; Yi-fan FU ; He CUI ; Qian ZHOU ; Zhi-kang WANG ; Peng CAO ; Fa-ping BAI ; Xue-ting CAI
Acta Pharmaceutica Sinica 2024;59(9):2519-2528
The 2-(2-phenylethyl)chromones were separated from agarwood of
2.The effect and mechanism of Lycium barbarum leaves on D -galactose-induced cataract in rats based on metabolomics
Cong LU ; Shu-lan SU ; Yue ZHU ; Sheng GUO ; Da-wei QIAN ; Hong-jie KANG ; Lan-ping GUO ; Jin-ao DUAN
Acta Pharmaceutica Sinica 2024;59(9):2594-2605
Evaluate the interventional effect of
3.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
4.Nature-effect transformation mechanism of mulberry leaves and silkworm droppings based on chemical composition analysis.
Ai-Ping DENG ; Yue ZHANG ; Yi-Han WANG ; Jia-Chen ZHAO ; Jin-Xiu QIAN ; Li-Ping KANG ; Tie-Gui NAN ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(8):2160-2185
Starting with the relationship between mulberry leaves and silkworm droppings as food and metabolites, this study systematically compared the chemical components, screened out differential components, and quantitatively analyzed the main differential components based on ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and UPLC-Q-TRAP-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Moreover, the in vitro enzymatic transformation of the representative differential components was studied. The results showed that(1) 95 components were identified from mulberry leaves and silkworm droppings, among which 27 components only exist in mulberry leaves and 8 components in silkworm droppings. The main differential components were flavonoid glycosides and chlorogenic acids.(2) Nineteen components with significant difference were quantitatively analyzed, and the components with significant differences and high content were neochlorogenic acid, chlorogenic acid, and rutin.(3) The crude protease in the mid-gut of silkworm significantly metabolized neochlorogenic acid and chlorogenic acid, which may be an important reason for the efficacy change in mulberry leaves and silkworm droppings. This study lays a scientific foundation for the development, utilization, and quality control of mulberry leaves and silkworm droppings. It provides references for clarifying the possible material basis and mechanism of the pungent-cool and dispersing nature of mulberry leaves transforming into the pungent-warm and dampness-resolving nature of silkworm droppings, and offers a new idea for the study of nature-effect transformation mechanism of traditional Chinese medicine.
Animals
;
Bombyx
;
Morus/chemistry*
;
Chlorogenic Acid/analysis*
;
Gas Chromatography-Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Plant Leaves/chemistry*
5.Identification and transcriptional activity analysis of core regulatory region of human guanylate binding protein 5 gene promoter
YE Ting ; YANG Kang ; WANG Tian-tian ; LIAO Yu-jiao ; DU Wen-qian ; HUANG Min ; JIANG Pei-wen ; LI Min-hui ; YANG Ping
Chinese Journal of Biologicals 2023;36(2):138-144
Objective To construct luciferase reporter plasmids of truncated fragments of different lengths of human guanylate binding protein 5(GBP5)gene promoter and analyze the transcriptional activity of each fragment to determine the core regulatory region.Methods GBP5promoter sequence was amplified by PCR,truncated into five fragments of different lengths and connected to pGL3-basic plasmid.The constructed recombinant plasmids pGL3-GBP5-11/21/31/41/51were transfected into 293FT cells and detected for luciferase activity.The binding sites of transcription factors in GBP5promoter region were predicted by JASPAR software,and Yin-Yang transcription factor 1(YY1)targeting the core regulatory region was selected and verified for the transcriptional regulatory activity.The CDS sequence of YY1 was amplified by PCR to construct the overexpression plasmid pIRES2-EGFP-YY1,which was then co-transfected to 293FT cells with plasmids pGL3-GBP5-21(-1 623 ~ +47 bp)and internal reference plasmid pRL-CMV,and detected for luciferase activity to analyze the regulation of transcription factor YY1 on GBP5 promoter activity.Results Colony PCR and double enzyme digestion identification proved that the plasmid of human GBP5 promoter reporter gene was correctly constructed;JASPAR software predicted that there were multiple transcription factor binding sites such as STAT1,YY1 and Foxp3 in GBP5promoter region.Double luciferase activity assay showed that pGL3-GBP5-21(-1 623 ~ +47 bp)showed the highest promoter activity,while the promoter activity of pGL3-GBP5-41(-520 ~ +47 bp)decreased significantly,suggesting that the core region of GBP5 promoter was located at upstream-1 623 ~-520 bp of 5 'UTR;Overexpression of YY1 significantly activated the GBP5 promoter activity and regulated the expression of GBP5.Conclusion The core regulatory region of human GBP5 promoter was located in upstream-1 623 ~-520 bp of the 5 'UTR,with a binding site of transcription factor YY1 existing in this region.Meanwhile,overexpression of YY1 significantly effected the activity of GBP5 promoter.
6.Dead heart of pith-decayed Scutellariae Radix: a study based on multi-omics.
Jin-Xiu QIAN ; Ya-Peng WANG ; Huai-Zhu LI ; Yan-Meng LIU ; Yi-Han WANG ; Li-Ping KANG ; Tie-Gui NAN ; Jin-Fu TANG ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(17):4634-4646
Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-β-D-glucuronide, oroxylin A-7-O-β-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.
Drugs, Chinese Herbal/chemistry*
;
Scutellaria baicalensis/chemistry*
;
Glucuronides
;
Multiomics
;
Flavonoids/chemistry*
7. Astragaloside IV inhibits Ang H-induced cell proliferation and collagen expression in cardiac fibroblasts by activating short-chain acyl-CoA dehydrogenase
Lan-Ting LIU ; Qing-Ping XU ; Huan PENG ; Qian-Hui SHEN ; Kang JIA ; Li-Yuan QING ; Si-Gui ZHOU ; Lan-Ting LIU ; Qing-Ping XU ; Huan PENG ; Qian-Hui SHEN ; Kang JIA ; Li-Yuan QING ; Si-Gui ZHOU
Chinese Pharmacological Bulletin 2023;39(8):1450-1456
Aim To explore the effect of astragaloside IV (AS-IV) on cell proliferation and collagen expression in cardiac fibroblasts (CFs) of rats induced with angiotensin II (Ang II) and its mechanism. Methods CFs were pretreated with short-chain acyl-CoA dehydrogenase (SCAD) siRNA1186 for 12 h and then co-treated with Ang TJ and AS-IV for 36 h. The expressions of SCAD, α-SMA, collagen I and collagen III in CFs were detected by Western blot. mRNA expression levels of SCAD, a-SMA, collagen I and collagen III in CFs were detected by quantitative real-time PCR. The SCAD enzymatic activity, the content of ATP, hydroxyproline and free fatty acid were measured by detection kits. Results The expression of α-SMA, collagen I and collagen III were up-regulated (all P < 0. 01) in CFs induced by Ang II compared with the control cells, and the expression and enzymatic activity of SCAD significantly decreased (P < 0. 01, P< 0. 05). The content of ATP decreased (P < 0.01), and the content of hydroxyproline and free fatty acids increased (all P < 0.01). Compared with Ang II group, SCAD expression and enzymatic activity, and ATP content were significantly increased (all P < 0.01) in Ang II + AS-TV group, but the content of hydroxyproline and free fatty acids, and the expression of α-SMA, collagen I and collagen III significantly decreased (all P < 0.01). However, compared with the Ang II + NC group, there was no significant difference in all indices in the Ang II + SiRNA1186 + AS-TV group. The protective effect of AS-TV on Ang II -induced cell proliferation and collagen expression in CFs was eliminated by the interference of SCAD SiRNA1186. Conclusions AS-IV may inhibit Ang II-induced cell proliferation and collagen expression in CFs by activating SCAD.
8.Identification of metabolites of Yiqi Baoyuan Prescription in rat plasma, bile, urine and feces after oral administration.
Yi-Ying ZHANG ; Li-Ping WU ; Yi-Fan FENG ; Hui REN ; Hong-Jie KANG ; Yue ZHU ; Sheng GUO ; Shu-Lan SU ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2022;47(16):4469-4479
This study was designed to determine the metabolites of Yiqi Baoyuan Prescription(YQBYP) in rats. The ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry(UPLC-TOF-MS) and mass defect filter(MDF) were employed to analyze the metabolites of YQBYP in rat plasma, bile, urine and feces. Chromatographic separation was conducted on Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) under gradient elution with 0.1% formic acid aqueous solution(A)-acetonitrile(B), and the column temperature was 30 ℃. Electrospray ion(ESI) source was used under positive and negative ion modes, with capillary voltage of 3.0 kV and mass scanning range of m/z 100-1 000. In this experiment, 9 prototype components and 36 metabolites were identified in rat plasma, bile, urine and feces samples. The results showed that the main metabolic pathways of YQBYP in rats involved methylation, demethylation, oxidation, and other phase Ⅰ reactions as well as glucuronidation, sulfation, and other phase Ⅱ reactions. This study provided scientific basis for clarifying the therapeutic material basis of YQBYP and product development.
Administration, Oral
;
Animals
;
Bile/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Feces/chemistry*
;
Prescriptions
;
Rats
;
Rats, Sprague-Dawley
9.Mechanism of Arnebia euchroma Against Melanoma: An Exploration Based on Network Pharmacology and Experimental Verification
Ying-ying KANG ; Hai-yan BAO ; Min LI ; Fang XU ; Ying YANG ; Ling CHEN ; Yi-ping PU ; Qian QIAN ; Jian-guang LI
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(1):204-211
ObjectiveTo preliminarily predict the active components, action targets, and signaling pathways of Arnebia euchroma in the treatment of melanoma based on network pharmacology and molecular docking, and to verify its possible mechanism of action in in vitro experiments. MethodThe active components and related targets of A. euchroma were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP)SwissTargetPrediction and literature, and the targets related to melanoma from the GeneCards, Online Mendelian Inheritance in Man (OMIM), and Comparative Toxicogenomics Database (CTD). Following the construction of the protein-protein interaction (PPI) network of active components and related targets of A. euchroma and melanoma-related targets using STRING, Cytoscape 3.8.2 was used for screening and analyzing the nodes in the network of A. euchroma against melanoma. The intersections were subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis using DAVID 6.8. Acetyl alkannin, the active component in A. euchroma, was docked to the target by AutoDock Vina 1.1.2. The in vitro experiments were then carried out to verify the anti-melanoma effect of A. euchroma. ResultA total of 271 common targets of A. euchroma and melanoma were harvested, among which 23 were key targets, including matrix metalloproteinase-9 (MMP-9) and Janus kinase 2 (JAK2). As revealed by KEGG enrichment analysis, A. euchroma mainly acted on Janus kinase/signal transduction and activator of transcription (JAK/STAT), tyrosine kinase receptor (ErbB), and vascular endothelial growth factor (VEGF) signaling pathways to resist melanoma. According to molecular docking, acetyl alkannin exhibited a good docking activity with JAK2, STAT3, VEGF, MMP-9, and E-cadherin receptors. The results of Western blot and Real-time quantitative polymerase chain reaction (Real-time PCR) showed that acetyl alkannin at different doses inhibited the protein and gene expression of JAK2, STAT3, VEGF, MMP-9, and E-cadherin in A375 cells (P<0.05). ConclusionA. euchroma alleviates melanoma via multiple targets and multiple pathways, and it may exert the therapeutic effects by affecting the expression of such key target proteins as JAK2, STAT3, VEGF, MMP-9, and E-cadherin and inhibiting the invasion and metastasis of melanoma cells. This study has provided an experimental basis for the treatment of tumor with A. euchroma.
10.Early recovery status and outcomes after sepsis-associated acute kidney injury in critically ill patients
Xiaoqin LUO ; Ping YAN ; Ningya ZHANG ; Mei WANG ; Yinghao DENG ; Ting WU ; Xi WU ; Qian LIU ; Hongshen WANG ; Lin WANG ; Yixin KANG ; Shaobin DUAN
Journal of Central South University(Medical Sciences) 2022;47(5):535-545
Objective:Acute kidney injury (AKI) is one of the common complications in critically ill septic patients, which is associated with increased risks of death, cardiovascular events, and chronic renal dysfunction. The duration of AKI and the renal function recovery status after AKI onset can affect the patient prognosis. Nevertheless, it remains controversial whether early recovery status after AKI is closely related to the prognosis in patients with sepsis-associated AKI (SA-AKI). In addition, early prediction of renal function recovery after AKI is beneficial to individualized treatment decision-making and prevention of severe complications, thus improving the prognosis. At present, there is limited clinical information on how to identify SA-AKI patients at high risk of unrecovered renal function at an early stage. The study aims to investigate the association between early recovery status after SA-AKI, identify risk factors for unrecovered renal function, and to improve patients ' quality of life.Methods:We retrospectively analyzed clinical data of septic patients who were admitted to the intensive care unit (ICU) and developed AKI within the first 48 hours after ICU admission in the Second Xiangya Hospital and the Third Xiangya Hospital of Central South University from January 2015 to March 2017. Sepsis was defined based on the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). AKI was diagnosed and staged according to the 2012 Kidney Disease:Improving Global Outcomes (KDIGO) guideline. SA-AKI patients were assigned into 3 groups including a complete recovery group, a partial recovery group, and an unrecovered group based on recovery status at Day 7 after the diagnosis of AKI. Patients ' baseline characteristics were collected, including demographics, comorbidities, clinical and laboratory examination information at ICU admission, and treatment within the first 24 hours. The primary outcome of the study was the composite of death and chronic dialysis at 90 days, and secondary outcomes included length of stay in the ICU, length of stay in the hospital, and persistent renal dysfunction. Multivariate regression analysis was performed to evaluate the prognostic value of early recovery status after AKI and to determine the risk factors for unrecovered renal function after AKI. Sensitivity analysis was conducted in patients who still stayed in hospital on Day 7 after AKI diagnosis, patients without premorbid chronic kidney disease, and patients with AKI Stage 2 to 3.Results:A total of 553 SA-AKI patients were enrolled, of whom 251 (45.4%), 73 (13.2%), and 229 (41.4%) were categorized as the complete recovery group, the partial recovery group, and the unrecovered group, respectively. Compared with the complete or partial recovery group, the unrecovered group had a higher incidence of 90-day mortality (unrecovered vs partial recovery or complete recovery: 64.2% vs 26.0% or 22.7%; P<0.001) and 90-day composite outcome (unrecovered vs partial recovery or complete recovery:65.1%vs 27.4%or 22.7%;P<0.001). The unrecovered group also had a shorter length of stay in the hospital and a larger proportion of progression into persistent renal dysfunction than the other 2 groups. After adjustment for potential confounders, patients in the unrecovered group were at an increased risk of 90-day mortality (HR=3.50, 95% CI 2.47 to 4.96, P<0.001) and 90-day composite outcome (OR=5.55, 95%CI 3.43 to 8.98, P<0.001) when compared with patients in the complete recovery group, but patients in the partial recovery group had no significant difference (P>0.05). Male sex, congestive heart failure, pneumonia, respiratory rate>20 beats per minute, anemia, hyperbilirubinemia, need for mechanical ventilation, and AKI Stage 3 were identified as independent risk factors for unrecovered renal function after AKI. The sensitivity analysis further supported that unrecovered renal function after AKI remained an independent predictor for 90-day mortality and composite outcome in the subgroups. Conclusion:The early recovery status after AKI is closely associated with poor prognosis in critically ill patients with SA-AKI. Unrecovered renal function within the first 7 days after AKI diagnosis is an independent predictor for 90-day mortality and composite outcome. Male sex, congestive heart failure, pneumonia, tachypnea, anemia, hyperbilirubinemia, respiratory failure, and severe AKI are risk factors for unrecovered renal function after AKI. Therefore, timely assessment for the renal function in the early phase after AKI diagnosis is essential for SA-AKI patients. Furthermore, patients with unrecovered renal function after AKI need additional management in the hospital, including rigorous monitoring, avoidance of nephrotoxin, and continuous assessment for the renal function, and after discharge, including more frequent follow-up, regular outpatient consultation, and prevention of long-term adverse events.


Result Analysis
Print
Save
E-mail