1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Textual Research on Key Information of Classic Formula Shengma Gegentang
Yuli LI ; Ping JIANG ; Zhenyi YUAN ; Yuanyuan HE ; Ya'nan MAO ; Shasha WANG ; Wenyan ZHU ; Zhouan YIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):187-197
Shengma Gegentang is one of the classic formulas in the Catalogue of Ancient Classic Prescriptions (Second Batch). This study reviewed ancient and modern literature and used literature tracing and bibliometric methods to analyze the historical evolution, efficacy, indications, dosage decoctions, and modern clinical disease spectrum of Shengma Gegentang. The results indicated that the earliest record of Shengma Gegentang can be found in the Taiping Huimin Heji Jufang of the Song dynasty, but its origin can be traced back to the Shaoyao Siwu Jiejitang in the Beiji Qianjin Yaofang of the Tang dynasty. The composition dosage of Shengma Gegentang is 413 g of Cimicifugae Rhizoma, 619.5 g of Puerariae Lobatae Radix, 413 g of Paeoniae Radix Alba, and 413 g of Glycyrrhizae Radix et Rhizoma, which are ground into coarse powder. Each dose is 12.39 g, and the amount of water added is 300 mL. 100 mL of solution is decocted and taken at the right time. The four drugs in the formula play the role of relieving exterior syndrome, penetrating pathogenic factors, and detoxicating together. Its indications are widely involved in internal medicine, pediatrics, surgery, ophthalmology and otorhinolaryngology, obstetrics and gynecology, sexually transmitted diseases, and other diseases, such as measles, sores, acne, spots, surgical gangrene, red eyes, toothache, chancre, and fetal poison. The epidemic diseases treated by Shengma Gegentang are complicated, including rash, pox, macula, numbness, summer diarrhea, dysentery, sha disease, febrile symptoms, spring warmth, winter warmth, and cold pestilence. At the same time, it is a plague prevention formula. Although Shengma Gegentang has a wide range of indications, it cannot be separated from the pathogenic mechanism of evil Qi blocking the muscle surface and heat in the lungs and stomach. The modern clinical disease spectrum of Shengma Gegentang involves the ophthalmology and otorhinolaryngology system, nervous system, pediatric-related diseases and syndromes, skin system, hepatobiliary system, and digestive system. It plays a key role in the treatment of epidemic diseases such as measles, chronic hepatitis B, dysentery, and tetanus.
3.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
4.Study on the protective effect and mechanism of Zhilong Huoxue Tongyu Capsule on myocardial ischemia reperfusion injury mice based on serum metabolomics
Mengnan LIU ; Linshen MAO ; Hao WU ; Yuan ZOU ; Qi LAN ; Jinyi XUE ; Ping LIU ; Sijin YANG ; Zhongjing HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(4):523-531
Objective To observe the protective effect of Zhilong Huoxue Tongyu Capsule(Zhilong Capsule)on myocardial ischemia reperfusion injury(MIRI)in mice,and explore its regulatory mechanism using metabolomics.Methods Using a random number table method,30 C57BL/6J mice were randomly divided into the following three groups:sham operation group,model group,and Zhilong Capsule group(6.24 g/kg),with 10 mice in each group.In mice in the model group and the Zhilong Capsule group,a mouse MIRI model was established by ligating the left anterior descending branch,while mice in the sham operation group underwent threading without ligation.The Zhilong Capsule group began modeling one week after pre-administration and continued to receive intragastric administration for two weeks after modeling once daily.The cardiac function,including the left ventricular ejection fraction(LVEF)and left ventricular fraction shortening(LVFS),was assessed by color echocardiography.The myocardial fibrosis and apoptosis were observed by Masson staining and TUNEL staining,respectively.Enzyme-linked immunosorbent assay was used to measure the serum contents of lactate dehydrogenase(LDH)and brain natriuretic peptide(BNP).Liquid chromatography-mass spectrometry combined with multivariate statistical method was performed for serum metabolite detection and identification analysis.Results Compared with the model group,the mice in the Zhilong Capsule group exhibited an increase in LVEF and LVFS,a reduction in cardiac tissue structure disorder,a decrease in myocardial fibrosis,a decrease in cell apoptosis rate,and a decrease in serum LDH and BNP contents(P<0.05).Metabolomics result showed that intervention with Zhilong Capsule significantly regulated 30 differential metabolites related to MIRI.Important metabolic pathways involved 20 pathways related to tyrosine metabolism,arginine and proline metabolism,and vitamin digestion and absorption.Conclusion Zhilong Capsule has a protective effect on MIRI,and it may achieve this effect by regulating pathways related to tyrosine metabolism,arginine and proline metabolism,and vitamin digestion and absorption.
5.Consideration of countermeasures to promote family doctor contracting rate and first-return-visit rate in primary care institutions
Fei SHENG ; Ping LU ; Liqing ZHOU ; Bihua CHEN ; Chuntao YI ; Jiangen CHEN ; Fulai SHEN ; Tiantian DENG ; Dongjian XU ; Liling MAO
Chinese Journal of General Practitioners 2024;23(2):180-184
Based on the analysis of the existing problems and implementation dilemmas in family doctor contracting and first-return-visits faced by primary medical institutions in China, the authors propose countermeasures to provide reference for managers of primary health care institutions.
6.Practice and thinking of building active learning general practice team based on learning health system
Fei SHENG ; Tiantian DENG ; Dongjian XU ; Liling MAO ; Jing PU ; Yu LIU ; Ping YU ; Weifang LIU ; Fulai SHEN ; Puyang ZHENG
Chinese Journal of General Practitioners 2024;23(4):399-405
By sorting out the differences and connections between family doctor teams and specialized disease teams, role competency and mutual collaboration, and introducing the learning health system (LHS) mechanism, a comprehensive operating system for community general practice learning organizations based on LHS was constructed, focusing on five single disease types. The system includes a combination of general and specialized medicine that links three levels of medical institutions, thereby opening up the business cooperation process between professionals in different institutions, and establishing a sustainable collaboration mechanism. This allows medical institutions at three levels to continuously tap the potential of their disciplines, achieve their own ability growth and feel higher work value, and also bring better health solutions to residents, guided by the common goal of "health centered, patient centered".
7.Synthesis and anti-tumor activity of pyrazole pyrimidine PI3Kγ /δ inhibitors
Mao-qing DENG ; Feng-ming ZOU ; Zi-ping QI ; Chun WANG ; Kai-li LONG ; Qing-wang LIU ; Ao-li WANG ; Jing LIU ; Xiao-fei LIANG
Acta Pharmaceutica Sinica 2024;59(7):2041-2052
PI3K
8.Application of trauma-focused cognitive behavioral therapy among children and adolescents with childhood household dysfunction
Xinyi HOU ; Jingjing WAN ; Lianhua PENG ; Jiangming SHENG ; Nannan LONG ; Ping MAO
Journal of Central South University(Medical Sciences) 2024;49(1):145-152
Childhood household dysfunction(CHD)is a common adverse childhood experience,which brings the heavy physical and mental afflictions to children and adolescents.Trauma-focused cognitive behavioral therapy(TF-CBT)is an evidence-based psychotherapy that helps children and adolescents who have experienced childhood trauma with traumatic memories.It aims to enhance the coping abilities of CHD children and adolescents,thereby improving the negative effects caused by trauma and effectively reducing psychological burden.TF-CBT can effectively improve post-traumatic stress disorder,emotional and behavioral problems,and family function in children and adolescents with CHD.It is recommended to conduct high-quality original research in the future,develop targeted TF-CBT intervention plans based on potential predictive factors,adopt a combination of online and offline methods,and construct TF-CBT interventions suitable for the Chinese CHD population to meet the mental health service needs of CHD children and adolescents.
9.Effect of ANAs on hormone response in patients with AIH-PBC overlap syndrome and AIH-only
Qiong LI ; Ai-Ping TIAN ; Yong-Wu MAO ; Fu-Chun WANG ; Xiao-Rong MAO
Medical Journal of Chinese People's Liberation Army 2024;49(1):64-69
Objective To investigate the effect of antinuclear antibodies(ANAs)on hormone response in patients with autoimmune hepatitis(AIH)-primary biliary cholangitis(PBC)overlap syndrome(AIH-PBC OS)and AIH-only within half a year.Methods A retrospective analysis of 77 patients with autoimmune liver disease(AILD)admitted to First Clinical Medical College of Lanzhou University from January 2018 to December 2021,all of whom were confirmed by liver biopsy and receiving glucocorticoid treatment.Among them,46 patients were in AIH-PBC OS group and 31 were in AIH-only group.The general clinical characteristics,liver puncture-related indexes,autoantibodies and immunoglobulin indexes of patients in each group at the time of diagnosis were collected and compared,and the biochemical and immunoglobulin indexes of patients at the time of hormone use and at the time of review within 6 months were also collected,and the hormone response within 6 months was evaluated according to the levels of glutamic transaminase(AST),glutamic alanine transaminase(ALT)and immunoglobulin G(IgG),and the effect of ANAs on hormone response outcomes in both groups over a six-month period was analyzed.Multifactorial ordered logistic analysis was performed to evaluate the effect of ANAs on hormone response between two groups.Results There was no statistically significant difference in the percentage of AIH-PBC OS and AIH-only patients among both ANAs-positive and-negative AILD patients(55.6%vs.44.4%and 65.6%vs.34.4%,P>0.05).Among 46 patients with AIH-PBC OS,there were 25 in ANAs-positive group and 21 in ANAs-negative group.The rate of complete hormone response within 6 months was lower than that of ANAs-negative group(44.0%vs.76.2%),while the rate of hormone non-response was higher than that of ANAs-negative group(20.0%vs.0),and the difference was statistically significant(P<0.05).There were 20 cases of ANAs-positive and 11 cases of ANAs-negative in the 31 AIH-only patients.There was no statistically significant difference in the results of hormone response within 6 months between the two groups(P>0.05).Multifactorial ordered logistic analysis showed that AIH-PBC OS patients were more likely to have a higher likelihood of 6-month hormone non-response rate in ANAs-positive patients,and the difference was statistically different(P<0.05).And there was no significant effect of ANAs type on hormone response outcome in AIH-only patients(P>0.05).Conclusion AIH-PBC OS ANAs-positive patients have a poor hormone response within half a year.In AIH-only patients,ANAs have no significant effect on hormone response results.
10.Research progress on the status and management of diabetes mellitus after acute pancreatitis
Chen WU ; Xingmei MAO ; Shengxiao XIANG ; Ping XIE ; Can ZHANG ; Jing WANG
Chinese Journal of Practical Nursing 2024;40(2):157-161
Post-acute pancreatitis diabetes is one of the most common distant complications of acute pancreatitis. However, its incidence has been underestimated for a long time, indicating that it has not been taken seriously by healthcare professionals in clinical practice. This article provides a review of the urgent need for healthcare professionals to focus on the current status, adverse outcomes, screening and management aspects of diabetes after acute pancreatitis, and aims to provide a reference for healthcare professionals in their relevant clinical work.

Result Analysis
Print
Save
E-mail