2.Hypno-cardiac physiology: Aiming for an organised study of the physiological effects of hypnosis on the cardiovascular system.
Donato Giuseppe LEO ; Simon S KELLER ; Riccardo PROIETTI
Journal of Integrative Medicine 2025;23(5):457-461
Hypnosis is a promising tool in the management of various conditions, such as anxiety and chronic pain. Preliminary studies have shown that hypnosis can directly affect the cardiovascular system, as it increases parasympathetic activation and reduces sympathetic activity. However, the literature related to the effects of hypnosis on cardiovascular health is scarce, mainly due to misconceptions about hypnosis among researchers and medical professionals. This opinion paper examines the role that hypnosis may play in cardiovascular health, highlighting the physiological mechanisms behind it. The evidence suggests that hypnosis has both direct (e.g., changes in the activity of the autonomic nervous system) and indirect (e.g., changes in healthy behaviours) effects on the cardiovascular system; however, further studies are needed to properly define its mechanisms of action and its applicability in improving cardiovascular health. Thus, this opinion paper advocates the adoption of the term "hypno-cardiac physiology" to identify a new research area that gathers experts from neuroscience and cardiovascular science with the joint aim of seeking further understanding of the effects of hypnosis on the cardiovascular system. The adoption of a dedicated term to identify the study of the cardiovascular response to hypnosis will encourage its implementation in cardiovascular health interventions, promoting awareness of its effects among the public and the healthcare community, and promoting the formation of dedicated multidisciplinary research groups and dedicated educational training for healthcare professional interested in its applications. Please cite this article as: Leo DG, Keller SS, Proietti R. Hypno-cardiac physiology: Aiming for an organised study of the physiological effects of hypnosis on the cardiovascular system. J Integr Med. 2025; 23(5):457-461.
Humans
;
Autonomic Nervous System/physiology*
;
Cardiovascular Physiological Phenomena
;
Cardiovascular System/physiopathology*
;
Hypnosis
3.Visualization of flagella and its applications in research on flagellar functions.
Dongyang KONG ; Lu WANG ; Hong ZHANG ; Jingchao ZHANG
Chinese Journal of Biotechnology 2025;41(1):117-130
Flagella are important protein structures on the cell surface of bacteria and the main appendage for bacterial swimming. Flagella play a crucial role in bacterial motility, chemotaxis, pathogenicity, and environmental sensing. With the development of microscopic tracking technology and flagellum visualization tools, new forms of flagellar motility and increasing roles of flagella in the physiological activities of bacteria have been discovered. This review introduces the visualization methods of flagella and the applications of these methods in studying flagellar functions, giving insights into exploring the functions of flagella and laying a theoretical foundation for its future applications in inhibiting bacterial transmission and treating bacterial infections.
Flagella/physiology*
;
Bacterial Physiological Phenomena
;
Chemotaxis/physiology*
;
Bacteria
4.Functions and mechanisms of autophagy-related genes in plant responses to adversity stresses.
Yun'er REN ; Guoqiang WU ; Ming WEI
Chinese Journal of Biotechnology 2025;41(2):510-529
Autophagy is an evolutionarily conserved self-degradation process in eukaryotes. It not only plays a role in plant growth and development but also is involved in plant responses to biotic and abiotic stresses. Plants can initiate autophagy to degrade the surplus or damaged cytoplasmic materials and organelles, thus coping with abiotic and biotic stresses. The initiation of autophagy depends on autophagy-related genes (ATGs). The transcription factors can directly bind to the promoters of ATGs to activate autophagy and regulate their transcriptional levels and post-translational modifications. Furthermore, ATGs can directly or indirectly interact with plant hormones to regulate plant responses to stresses. When plants are exposed to salinity, drought, extreme temperatures, nutrient deficiencies, and pathogen stress, ATGs are significantly induced, which enhances the autophagy activity to facilitate the degradation of the denatured and misfolded proteins, thereby enhancing plant tolerance to adversity stresses. This article summarizes the discovery, structures, and classification of plant ATGs, reviews the research progress in the mechanisms of ATGs in plant responses to abiotic and biotic stresses, and prospects the future research directions. This review is expected to provide the genetic resources and a theoretical foundation for the genetic improvement of crops in responses to stress tolerance.
Autophagy/physiology*
;
Stress, Physiological/genetics*
;
Gene Expression Regulation, Plant
;
Plants/metabolism*
;
Transcription Factors/metabolism*
;
Plant Proteins/genetics*
;
Genes, Plant
;
Plant Physiological Phenomena
;
Droughts
5.Mathematical modelling for cellular processes.
Chinese Journal of Biotechnology 2025;41(3):1052-1078
Biomanufacturing harnesses engineered cells for the large-scale production of biochemicals, biopharmaceuticals, biofuels, and biomaterials, playing a vital role in mitigating global environmental crises, achieving carbon peaking and neutrality, and driving the green transformation of the economy and society. The effective design and construction of these engineered cells require precise and comprehensive computational models. Recent technological breakthroughs including high-throughput sequencing, mass spectrometry, spectroscopy, and microfluidic devices, coupled with advances in data science, artificial intelligence, and automation, have enabled the rapid acquisition of large-scale biological datasets, thereby facilitating a deeper understanding of cellular dynamics and the construction of mechanism-based models with enhanced accuracy. This review systematically summarises the mathematical frameworks employed in cellular modelling. It begins by evaluating prevalent mathematical paradigms, such as network topology analyses, stochastic processes, and kinetic equations, critically assessing their applicability across various contexts. The discussion then categorises modelling strategies for specific cellular processes, including cellular growth and division, morphogenesis, DNA replication, transcriptional regulation, metabolism, signal transduction, and quorum sensing. We also examine the recent progress in developing whole-cell models through the integration of diverse cellular processes. The review concludes by addressing key challenges such as data scarcity, unknown mechanisms, multi-dimensional data integration, and exponentially escalating computational complexity. Overall, this work consolidates the mathematical models for the precise simulation of cellular processes, thereby enhancing our understanding of the molecular mechanisms governing cellular functions and contributing to the future design and optimisation of engineered organisms.
Models, Biological
;
Cell Physiological Phenomena
;
Cell Engineering/methods*
;
Humans
6.Advances in reconstruction and optimization of cellular physiological metabolic network models.
Chinese Journal of Biotechnology 2025;41(3):1112-1132
The metabolic reactions in cells, whether spontaneous or enzyme-catalyzed, form a highly complex metabolic network closely related to cellular physiological metabolic activities. The reconstruction of cellular physiological metabolic network models aids in systematically elucidating the relationship between genotype and growth phenotype, providing important computational biology tools for precisely characterizing cellular physiological metabolic activities and green biomanufacturing. This paper systematically introduces the latest research progress in different types of cellular physiological metabolic network models, including genome-scale metabolic models (GEMs), kinetic models, and enzyme-constrained genome-scale metabolic models (ecGEMs). Additionally, our paper discusses the advancements in the automated construction of GEMs and strategies for condition-specific GEM modeling. Considering artificial intelligence offers new opportunities for the high-precision construction of cellular physiological metabolic network models, our paper summarizes the applications of artificial intelligence in the development of kinetic models and enzyme-constrained models. In summary, the high-quality reconstruction of the aforementioned cellular physiological metabolic network models will provide robust computational support for future research in quantitative synthetic biology and systems biology.
Metabolic Networks and Pathways/physiology*
;
Models, Biological
;
Artificial Intelligence
;
Systems Biology
;
Kinetics
;
Cell Physiological Phenomena
;
Computational Biology
;
Synthetic Biology
;
Humans
7.Multi-modal cross-scale imaging technologies and their applications in plant network analysis.
Yining XIE ; Yuchen KOU ; Yanhui YUAN ; Jinbo SHEN ; Xiaohong ZHUANG ; Jinxing LIN ; Xi ZHANG
Chinese Journal of Biotechnology 2025;41(7):2559-2578
A complete plant body consists of elements on different scales, including microscopic molecules, mesoscopic multicellular structures, and macroscopic tissues and organs, which are interconnected to form complex biological networks. The growth and development of plants involve the regulation of elements on different scales and their biological networks, which requires the coordinated operation of multiple molecules, cells, tissues, and organs. It is difficult to reveal the essence of multi-level life activities by a single method or technology. In recent years, the development of various novel imaging technologies has provided new approaches for revealing the complex life activities in plants. Using multi-modal imaging technologies to study the cross-scale network connections of plants from the microscopic, mesoscopic, and macroscopic levels is crucial for understanding the complex internal connections behind biological functions. This paper first summarizes multi-modal cross-scale imaging technologies, three-dimensional reconstruction, and image processing methods, outlines the basic framework of cross-scale network connection properties, and then summarizes the applications of multi-modal imaging technologies in elucidating plant multi-scale networks. Finally, this review systematically integrates the combined analysis of cross-scale 3D spatial structural data and single-cell omics, laying a theoretical foundation for the innovation of novel plant imaging technologies. Furthermore, it provides a new research paradigm for in-depth exploration of the interaction mechanisms among cross-scale elements and the principles of biological network connectivity in plant life activities.
Plants/metabolism*
;
Imaging, Three-Dimensional/methods*
;
Image Processing, Computer-Assisted/methods*
;
Multimodal Imaging/methods*
;
Plant Physiological Phenomena
8.Visualization method of type Ⅳ pili and its application in the study of pili function.
Chinese Journal of Biotechnology 2023;39(11):4534-4549
As an important protein structure on the surface of bacteria, type Ⅳ pili (TFP) is the sensing and moving organ of bacteria. It plays a variety of roles in bacterial physiology, cell adhesion, host cell invasion, DNA uptake, protein secretion, biofilm formation, cell movement and electron transmission. With the rapid development of research methods, technical equipment and pili visualization tools, increasing number of studies have revealed various functions of pili in cellular activities, which greatly facilitated the microbial single cell research. This review focuses on the pili visualization method and its application in the functional research of TFP, providing ideas for the research and application of TFP in biology, medicine and ecology.
Fimbriae, Bacterial/metabolism*
;
Bacterial Proteins/genetics*
;
Bacterial Physiological Phenomena
;
Bacterial Adhesion/physiology*
9.Research progress on the role and clinical significance of DNA methylation in early nutritional programming.
Acta Physiologica Sinica 2023;75(3):403-412
Early life nutritional environment is not only associated with the growth and development of children, but also affects the health of adults. Numerous epidemiological and animal studies suggest that early nutritional programming is an important physiological and pathological mechanism. DNA methylation is one of the important mechanisms of nutritional programming, which is catalyzed by DNA methyltransferase, a specific base of DNA covalently binds to a methyl group, to regulate gene expression. In this review, we summarize the role of DNA methylation in the "abnormal developmental planning" of key metabolic organs caused by excessive nutrition in early life, resulting in long-term obesity and metabolic disorders in the offspring, and explore the clinical significance of regulating DNA methylation levels through dietary interventions to prevent or reverse the occurrence of metabolic disorders in the early stage in a "deprogramming" manner.
Humans
;
Animals
;
Female
;
DNA Methylation
;
Epigenesis, Genetic
;
Clinical Relevance
;
Maternal Nutritional Physiological Phenomena
;
Metabolic Diseases
10.Dexmedetomidine Promotes Angiogenesis and Vasculogenic Mimicry in Human Hepatocellular Carcinoma through α 2-AR/HIF-1α/VEGFA Pathway.
Tao FANG ; Li LIN ; Zhi Jian YE ; Lian FANG ; Shuai SHI ; Ke Da YU ; Hui Hui MIAO ; Tian Zuo LI
Biomedical and Environmental Sciences 2022;35(10):931-942
OBJECTIVE:
Dexmedetomidine (DEX), the most specific α 2-adrenergic receptor agonist widely used for its sedative and analgesic properties, has been reported to upregulate HIF-1α expression to protect hypoxic and ischemic tissues. However, it is largely unclear whether DEX can also upregulate Hypoxia-inducible factor-1 alpha (HIF-1α) expression and its downstream vascular endothelial growth factor-A (VEGFA) in cancer tissues with oxygen-deficient tumor microenvironment.
METHODS:
We used SMMC-7721 cells, MHCC97-H cells, and a mouse model of orthotopic hepatic carcinoma to explore the effect of DEX on angiogenesis and vasculogenic mimicry (VM) and its mechanism. Under normoxic (20% O 2) and hypoxic (1% O 2) conditions, DEX was used to intervene cells, and yohimbine was used to rescue them.
RESULTS:
The results showed that DEX promoted angiogenesis and VM in human liver cancer cells within a certain dose range, and the addition of yohimbine inhibited this effect. DEX could activate HIF-1α/VEGFA pathway, which was further verified by silencing HIF-1α. Consistently, in vivo results also showed that DEX can up-regulate HIF-1α/VEGFA expression, and enhance the number of VM channels and microvessel density (MVD).
CONCLUSION
We believe that HIF-1α/VEGFA might be an important signaling pathway by which DEX promotes angiogenesis and VM formation in human hepatocellular carcinoma, whereas α 2-adrenergic receptor mediation might be the critical mechanisms.
Animals
;
Humans
;
Mice
;
Adrenergic alpha-2 Receptor Agonists/pharmacology*
;
Carcinoma, Hepatocellular
;
Cardiovascular Physiological Phenomena
;
Dexmedetomidine/pharmacology*
;
Hypoxia
;
Liver Neoplasms/drug therapy*
;
Oxygen
;
Tumor Microenvironment
;
Vascular Endothelial Growth Factor A/genetics*
;
Receptors, Adrenergic, alpha-2/metabolism*

Result Analysis
Print
Save
E-mail