1.Regulation of exogenous calcium on photosynthetic system of honeysuckle under salt stress.
Lu-Yao HUANG ; Zhuang-Zhuang LI ; Tong-Yao DUAN ; Lei WANG ; Yong-Qing ZHANG ; Jia LI
China Journal of Chinese Materia Medica 2019;44(8):1531-1536
Exogenous calcium can enhance the resistance of certain plants to abiotic stress. However,the role of calcium insaltstressed honeysuckle is unclear. The study is aimed to investigate the effects of exogenous calcium on the biomass,chlorophyll content,gas exchange parameters and chlorophyll fluorescence of honeysuckle under salt stress. The results showed that the calcium-treated honeysuckle had better photochemical properties than the salt-stressed honeysuckle,such as PIABS,PItotal,which represents the overall activity of photosystemⅡ(PSⅡ),and related parameters for characterizing electron transport efficiency φP0,ψE0,φE0,σR,and φR are significantly improved. At the same time,the gas exchange parameters Gs,Ci,Trare also maintained at a high level. In summary,exogenous calcium protects the activity of PSⅡ,promotes the transmission of photosynthetic electrons,and maintains a high Ci,therefore enhances the resistance of honeysuckle under salt stress.
Calcium
;
pharmacology
;
Chlorophyll
;
analysis
;
Lonicera
;
drug effects
;
physiology
;
Photosynthesis
;
Plant Leaves
;
Salt Stress
2.Effects of ZJ0273 on barley and growth recovery of herbicide-stressed seedlings through application of branched-chain amino acids.
Ling XU ; Jian-Yao SHOU ; Rafaqat Ali GILL ; Xiang GUO ; Ullah NAJEEB ; Wei-Jun ZHOU
Journal of Zhejiang University. Science. B 2019;20(1):71-83
In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate (ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids (BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273 (100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.e. maximal photochemical efficiency (Fv/Fm), quantum yield of photosystem II (ФPSII), net photosynthetic rate (Pn), and chlorophyll meter value (soil and plant analyzer development (SPAD)). Cellular injury of herbicide-treated plants was also evidenced by increased levels of reactive oxygen species (ROS) and antioxidative enzyme activity. Elevated levels of herbicide significantly reduced the activity of acetolactate synthase (ALS)-a key enzyme in the biosynthesis of BCAAs. In a separate experiment, growth recovery in herbicide-stressed barley plants was studied using various concentrations of BCAAs (10, 50, 100, and 200 mg/L). Increasing BCAA concentration in growth media significantly increased the biomass of herbicide-stressed barley seedlings, but had no significant effect on non-stressed plants. Further, BCAAs (100 mg/L) significantly down-regulated ROS and consequently antioxidant enzyme levels in herbicide-stressed plants. Our results showed that exogenous application of BCAAs could reverse the inhibitory effects of ZJ0273 by restoring protein biosynthesis in barley seedlings.
Amino Acids, Branched-Chain/administration & dosage*
;
Antioxidants/metabolism*
;
Benzoates/pharmacology*
;
Biomass
;
Chlorophyll/metabolism*
;
Herbicides/pharmacology*
;
Hordeum/metabolism*
;
Photosynthesis/drug effects*
;
Plant Leaves/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Seedlings/metabolism*
3.Study on membrane type leaf water evaporation inhibitors for improving effect of preventing diseases and pest controlling of .
Dan-Dan WANG ; Zhe LV ; Chang-Qing XU ; Sai LIU ; Jun CHEN ; Xiao PENG ; Yan WU
China Journal of Chinese Materia Medica 2018;43(1):58-64
Through indoor and field comparative experiments, the properties of membrane type leaf evaporation inhibitors and its effects on photosynthesis of and compatibility and synergistic of pesticide were studied. The evaporation inhibitors and were chosen to investigate the suppression of water evaporation and the compatibility with pesticides. The effect of evaporation inhibitors on photosynthesis of leaves was determined by the chlorophyll fluorescence imaging system. The results showed that water evaporation of leaves of different leaf age were evidently suppressed after treated with evaporation inhibitor. The inhibitor was well compatible with pesticide and effectively improved the pesticide efficacy,and had no significant effect on chlorophyll fluorescence parameters. It is concluded that the evaporation inhibitor has good compatibility with the pesticide, and has remarkable effect of restraining moisture evaporation, which make it can be used for reducing the dosage and improving the efficacy of the pesticide in the field of
Chlorophyll
;
analysis
;
Lycium
;
drug effects
;
physiology
;
Pesticides
;
chemistry
;
Photosynthesis
;
Plant Leaves
;
drug effects
;
physiology
;
Plant Transpiration
4.Physiological response and bioaccumulation of Panax notoginseng to cadmium under hydroponic.
Zi-wei LI ; Ye YANG ; Xiu-ming CUI ; Pei-ran LIAO ; Jin GE ; Cheng-xiao WANG ; Xiao-yan YANG ; Da-hui LIU
China Journal of Chinese Materia Medica 2015;40(15):2903-2908
The physiological response and bioaccumulation of 2-year-old Panax notoginseng to cadmium stress was investigated under a hydroponic experiment with different cadmium concentrations (0, 2.5, 5, 10 μmol · L(-1)). Result showed that low concentration (2.5 μmol · L(-1)) of cadmium could stimulate the activities of SOD, POD, APX in P. notoginseng, while high concentration (10 μmol · L(-1)) treatment made activities of antioxidant enzyme descended obviously. But, no matter how high the concentration of cadmium was, the activities of CAT were inhibited. The Pn, Tr, Gs in P. notoginseng decreased gradually with the increase of cadmium concentration, however Ci showed a trend from rise to decline. The enrichment coefficients of different parts in P. notoginseng ranked in the order of hair root > root > rhizome > leaf > stem, and all enrichment coefficients decreased with the increase of concentration of cadmium treatments; while the cadmium content in different parts of P. notoginseng and the transport coefficients rose. To sum up, cadmium could affect antioxidant enzyme system and photosynthetic system of P. notoginseng; P. notoginseng had the ability of cadmium enrichment, so we should plant it in suitable place reduce for reducing the absorption of cadmium; and choose medicinal parts properly to lessen cadmium intake.
Cadmium
;
pharmacokinetics
;
toxicity
;
Hydroponics
;
Panax notoginseng
;
drug effects
;
growth & development
;
metabolism
;
Photosynthesis
;
drug effects
;
Superoxide Dismutase
;
metabolism
5.Effect of salicylic acid on photosynthesis, physio-biochemistry and quality of Panax ginseng under full sun shine in spring.
Wu-lin CAO ; Xiang-cai MENG ; Wei MA
China Journal of Chinese Materia Medica 2015;40(18):3553-3559
In order to search for a new pathway to improve the yield of ginseng through growing at the full sun shine accompanied by salicylic acid (SA), the net photosynthetic rate (P(n)), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), malondialdehyde (MDA) in Panax ginseng leaves, and the content of ginsenosides in roots were compared under various concentrations of SA and full sun shine with the traditional shade shed. Under the full sun shine, 0.05, 0.2 mmol x L(-1) SA increased net photosynthetic rate to a great extent. Under the cloudy day, the average net photosynthetic rate increased by 127.8% and 155.0% over the traditional shade shed, 13.9% and 27.5% over the treatment without SA respectively; under the clear day, 23.5% and 30.4% over the traditional shade shed, 8.6% and 14.6% over the treatment without SA, particularly obvious in the morning and late afternoon. With such concentration, SA increased activities of SOD, CAT, POD, and decreased the contents of the MDA. This difference resulted from different light intensity, rise of light saturation point, and fall of compensation point. Full sun shine decreased ginsenosides contents, but with SA, the ginsenosides regained, the content of Rg1 and Re, Rb1, total six types of ginsenosides in SA 0.2 mmol x L(-1) group were higher than those in the control group (P < 0.05) and other groups. The application of 0.2 mmol x L(-1) SA under full sun shine during a short time has little threat to the P. ginseng in spring, and could enhance the resistance to the adversity, which would improve the yield of ginseng heavily.
Catalase
;
analysis
;
metabolism
;
Ginsenosides
;
analysis
;
metabolism
;
Light
;
Malondialdehyde
;
analysis
;
metabolism
;
Panax
;
chemistry
;
drug effects
;
metabolism
;
radiation effects
;
Peroxidases
;
analysis
;
metabolism
;
Photosynthesis
;
drug effects
;
Plant Proteins
;
analysis
;
metabolism
;
Salicylic Acid
;
pharmacology
;
Seasons
;
Superoxide Dismutase
;
analysis
;
metabolism
6.Effects of nitrogen form on growth and quality of Chrysanthemums morifolium.
Peng ZHANG ; Kang-cai WANG ; Ming-chao CHENG ; Qing-hai GUO ; Jie ZHAO ; Xiu-Mei ZHAO ; Li LI
China Journal of Chinese Materia Medica 2014;39(17):3263-3268
This paper is aimed to study the effects of nitrogen form on the growth and quality of Chrysanthemums morifolium at the same nitrogen level. In order to provide references for nutrition regulation of Ch. morifolium in field production, pot experiments were carried out in the greenhouse at experimental station of Nanjing Agricultural University. Five proportions of ammonium and nitrate nitrogen were set up and a randomized block design was applied four times repeatedly. The results showed that the growth and quality of Ch. morifolium were significantly influenced by the nitrogen form. The content of chlorophyll and photosynthesis rate were the highest at the NH4(+) -N /NO3(-) -N ratio of 25:75; The activities of NR in different parts of Ch. -morifolium reached the highest at the NH4(+) - N/NO3(-) -N ratio of 0: 100. The contents of nitrate nitrogen in the root and leaves reached the highest at the NH4(+) -N/NO3(-) -N ratio of 50:50. The activities of GS, GOGAT and the content of amylum increased with the ratio of NO3(-) -N decreasing and reached it's maximum at the NH4 + -N/NO3 - -N ratio of 100: 0. The content of ammonium nitrogen were the highest at the NH4 + -N /NO3 --N ratio of 75: 25, while the content of soluble sugar reached the highest at the NH4(+)-N/NO3(-) -N ratio of 25: 75. The content of flavones, chlorogenic acid and 3,5-O-dicoffeoylqunic acid were 57.2 mg x g(-1), 0.673% and 1.838% respectively, reaching the maximum at the NH4(+) -N /NO3(-) -N ratio of 25:75; The content of luteoloside increased with the ratio of NO3(-) -N increasing and reached it's maximum at the NH4(+) -N/NO3(-) -N ratio of 0: 100. The yield of Ch. morifolium reached it's maximum at the NH4(+) -N /NO3(-) -N ratio of 25:75. Nitrogen form has some remarkable influence on the nitrogen metabolism, photosynthesis and growth, Nitrogen form conducive to the growth and quality of Ch. morifolium at the NH4(+) -N /NO3(-) -N ratio of 25: 75.
Ammonium Compounds
;
metabolism
;
pharmacology
;
Chlorophyll
;
metabolism
;
Chrysanthemum
;
drug effects
;
growth & development
;
metabolism
;
Flowers
;
drug effects
;
growth & development
;
metabolism
;
Glutamate Synthase
;
metabolism
;
Glutamate Synthase (NADH)
;
metabolism
;
Glutamate-Ammonia Ligase
;
Nitrates
;
metabolism
;
pharmacology
;
Nitrogen
;
metabolism
;
pharmacology
;
Photosynthesis
;
drug effects
;
Plant Leaves
;
drug effects
;
growth & development
;
metabolism
;
Plant Proteins
;
metabolism
;
Plant Roots
;
drug effects
;
growth & development
;
metabolism
;
Plant Stems
;
drug effects
;
growth & development
;
metabolism
7.Effects of lead stress on net photosynthetic rate, SPAD value and ginsenoside production in Ginseng (Panax ginseng).
Yao LIANG ; Xiao-Li JIANG ; Fen-Tuan YANG ; Qing-Jun CAO ; Gang LI
China Journal of Chinese Materia Medica 2014;39(16):3054-3059
The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P < 0.05), the lowest net photosynthetic rate and SPAD value showed in the treatment supplied with 1 000 mg x kg(-1) of lead, with decline of 57.8%,11.0%, respectively. Total content of ginsenoside in ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P < 0.05), and highest content appeared in these ginsengs exposed to 1000 mg x kg(-1) of lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P < 0.01), and significant positive linear correlations between total content of ginsenoside and lead concentration was also observed (P < 0.05). These results strongly indicate that exposing to high level of lead negatively affects photosynthetic performance in ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.
Ginsenosides
;
analysis
;
metabolism
;
Lead
;
pharmacology
;
Panax
;
chemistry
;
drug effects
;
growth & development
;
metabolism
;
Photosynthesis
;
drug effects
;
Plant Leaves
;
chemistry
;
drug effects
;
growth & development
;
metabolism
;
Spectrophotometry
8.Effects of Ca2+ on photosynthetic parameters of Pinellia ternata and accumulations of active components in heat stress.
Wei-Xing YANG ; Gang-Gang HEI ; Jiao-Jiao LI ; Hong-Min ZHANG ; Lin-Lin LI ; Neng-Biao WU
China Journal of Chinese Materia Medica 2014;39(14):2614-2618
OBJECTIVETo study the effect of exogenous Ca2+ on photosynthetic parameters of Pinellia ternate and accumulations of active components under high temperature stress.
METHODThe pigment contents of P. ternata leaves, photosynthesis parameters and chlorophyll fluorescence parameters of P. ternata leaves, the contents of guanosine, adenosine and polysaccharide in P. ternata tubers were measured based on different concentrations of exogenous Ca2+ in heat stress when the plant height of P. ternata was around 10 cm.
RESULTThe contents of total chlorophyll and ratio of chlorophyll a/b were relatively higher by spaying Ca2+. Compared with the control, spaying 6 mmol x L(-1) Ca2+ significantly enhanced the net photosynthetic rate (Pn), transpiration (Tr) and stomatal limitation (L8), but reduced intercellular CO2 concentration (C) in P. ternata leaves. With the increase of Ca2+ concentration, maximal PS II efficiency (Fv/Fm), actual photosynthetic efficiency (Yield) and photochemical quenching coefficient (qP) initially increased and then decreased, however, minimal fluorescence (Fo) and non-photochemical quenching coefficient (NPQ) went down first and then went up. The contents of guanosine and polysaccharide and dry weight of P. ternata tubers showed a tendency of increase after decrease, and the content of adenosine increased with the increase of Ca2+ concentration. The content of guanosine and polysaccharide in P. ternata tubers and its dry weight reached maximum when spaying 6 mmol x L(-1) Ca2+.
CONCLUSIONWith the treatment of calcium ion, the inhibition of photosynthesis and the damage of PS II system were relieved in heat stress, which increased the production of P. ternata tubers.
Breeding ; Calcium ; pharmacology ; Chlorophyll ; metabolism ; Dose-Response Relationship, Drug ; Heat-Shock Response ; drug effects ; Organ Size ; drug effects ; Photosynthesis ; drug effects ; Pinellia ; drug effects ; growth & development ; metabolism ; physiology ; Plant Leaves ; drug effects ; growth & development ; metabolism
9.Influence of nitrogen forms ratio on growth and photosynthetic characteristics in Prunella vulgaris.
Manman YU ; Li LIU ; Qiaosheng GUO ; Qiong YAO ; Ning ZHAO ; Yuhang CHEN
China Journal of Chinese Materia Medica 2011;36(5):530-534
OBJECTIVEThe effects of different nitrogen forms on the growth and photosynthetic characteristics of Prunella vulgaris were observed.
METHODWater culture experiments were carried out to observe the effects of NH4+: NO3- ratios(100:0, 75: 25, 50:50, 25:75, 0:100 in mmol x L(-1)) on the growth and photosynthetic characteristics of P. vulgaris.
RESULTThe leaf area, fresh biomass and P(n) of these cultivars increased with the increasing of NH4(+) -N: NO3(-) -N ratios, and they were found to be the highest in 25: 75 NH4(+) -N: NO3)-) -N. However, they decreased with the increasing NH4(+) -N: NO3(-) -N ratio further. P. vulgaris had a minimum leaf area, biomass, chlorophyll content and P(n) in pure ammonium group. The biggest chlorophyll and carotenoid contents were found in the ratios of NH4(+) -N to NO3(-) -N of 50: 50.
CONCLUSIONThe results indicated that properly increasing nitrate proportion could promote the growth and photosynthesis of P. vulgaris.
Biomass ; Chlorophyll ; Nitrogen ; chemistry ; metabolism ; pharmacology ; Photosynthesis ; drug effects ; Plant Leaves ; drug effects ; Prunella ; growth & development ; metabolism ; Quaternary Ammonium Compounds ; chemistry ; metabolism
10.Effect of enhanced UV-B radiation on metabolism and berberine content of Coptis chinensis.
Quan WEN ; Nan ZHANG ; Ruixia CAO ; Xinyu ZHOU ; Juan TAGN ; Nengbiao WU
China Journal of Chinese Materia Medica 2011;36(22):3063-3069
OBJECTIVETo reveal the response of content berberine in root of Coptis chinensis to different intensity of UV-B radiation, and provide the theory basis for promoting the content of berberine.
METHODFour groups of UV-B radiation were set in the experiment which included: natural light control (0 W x m(-2)), UL (0.05 W x m(-2)), UM (0.10 W x m(-2)), UH (0.20 W x m(-2)). The special photosynthesis character, PPP pathway in the primary metabolism and lyrosinase activity, the changes of berberine in the root of C. chinensis were measured under different UV-B radiation.
RESULTPhotosynthetic pigment, qN, Fo, ETR, activity of glucose-6-phosphate dehydrogenase and the content of berberine in the root of C. chinensis, all of these parameters were lower than other groups under the UH radiation. However, under the UM radiation, C. chinensis protected itself from the light UV-B radiation by promoting the power of photosynthesis and PPP pathway in order to produce more NADPH and secondary metabolites.
CONCLUSIONC. chinensis increases its photosynthetic ability and PPP pathway which can furnish more precursor of secondary metabolites and NADPH that are needed in the secondary metabolism. Furthermore, the content of berberine increases correspondingly. The research provide the example for increasing the content of berberine in C. chinensis cultivation.
Berberine ; analysis ; Coptis ; chemistry ; drug effects ; metabolism ; Glucosephosphate Dehydrogenase ; metabolism ; NADP ; metabolism ; Photosynthesis ; radiation effects ; Ultraviolet Rays

Result Analysis
Print
Save
E-mail