1.Altered expressions of SphK1 and S1PR2 in hippocampus of epileptic rats.
Yuan-Yuan DONG ; Lin WANG ; Xu CHU ; Shuai CUI ; Qing-Xia KONG
Chinese Journal of Applied Physiology 2019;35(4):308-311
OBJECTIVE:
To observe the expressions of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 2 (S1PR2) in hippocampus of epileptic rats and to investigate the pathogenesis of SphK1 and S1PR2 in epilepsy.
METHODS:
One hundred and eight male Sprague-Dawley (SD) rats were randomly divided into control group (n=48) and pilocarpine (PILO) group (n=60). A robust convulsive status epilepticus (SE) was induced in PILO group rats by the application of pilocarpine. Control group rats were injected with respective of physiological saline. Pilocarpine group was randomly divided into 6 subgroups (n=8): acute group (E6 h, E1 d, E3 d), latent group (E7 d) and chronic group (E30 d, E56 d). Each subgroup has 8 control rats and 8 epileptic rats. Hippocampal tissue and brain slices were obtained from control rats and rats subjected to the Li-PILO model of epilepsy at 6 h, 1 d, 3 d,7 d,30 d and 56 d after status epilepticus (SE). Western blot technique was used to determine the expressions of SphK1 and S1PR2 in hippocampus at different point of time after pilocarpine treatment. Immunofluorescence was applied to detect the activation and proliferation of hippocampal astrocytes and the localization of SphK1 and S1PR2 in rat hippocampal astrocytes.
RESULTS:
Compared with control group, the levels of SphK1 in acute phase (E3 d), latent phase (E7 d) and chronic phase (E30 d, E56 d) were significantly increased while the expressions of S1PR2 were decreased in acute phase (E3 d), latent phase (E7 d) and chronic phase (E30 d, E56 d)(P<0.05 or P<0.01). Immunofluorescence results showed astrocyte activation and proliferation in hippocampus of epileptic (E7 d) rats (P<0.05). Confocal microscopy confirmed the preferential expressions of SphK1 and S1PR2 in epileptic rat(E7 d)hippocampal astrocytes.
CONCLUSION
The results indicate that SphK1 and S1PR2 may play an important role in the pathogenesis of epilepsy by regulating the activation and proliferation of hippocampal astrocytes and altering neuronal excitability.
Animals
;
Astrocytes
;
enzymology
;
Epilepsy
;
enzymology
;
physiopathology
;
Hippocampus
;
cytology
;
enzymology
;
Male
;
Phosphotransferases (Alcohol Group Acceptor)
;
metabolism
;
Pilocarpine
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Lysosphingolipid
;
metabolism
2.Sphingosine kinase 1 promotes glioma cell proliferation under hypoxia via calcium signaling.
He ZHANG ; Linhua LIU ; Ming SHI ; Xiaoshan LIU ; Huanwen TANG
Journal of Southern Medical University 2015;35(7):1014-1018
OBJECTIVETo investigate the role of sphingosine kinase 1 (SphK1) in regulating the proliferation of hypoxia-exposed glioma cells in vitro and explore the possible molecular mechanisms.
METHODSHuman glioblastoma U87MG cells was transfected with specific small interfering RNA (siRNA) constructs targeting SphK1, and the efficiency of SphK1 knockdown was validated by real-time PCR and Western blotting. The cells transfected with SphK1 siRNA and with a negative control siRNA were then exposed to 3% oxygen or 150 µmol/L CoCl2 to induce hypoxia. The cell proliferation and cell cycle changes following the exposure were evaluated with the Cell Counting Kit-8 and flow cytometry, respectively, and the intracellular Ca(2+) changes were monitored using Flou-4/AM under an inverted laser scanning confocal microscope.
RESULTSSphK1 knockdown significantly reduced hypoxia-induced calcium reflux and suppressed the cell proliferation. Application of OAG, an activator of calcium channels, however, obviously enhanced the cell proliferation under hypoxia.
CONCLUSIONSphK1 promotes the proliferation of glioma cells under hypoxia via regulating calcium signaling.
Calcium Signaling ; Cell Cycle ; Cell Hypoxia ; Cell Line, Tumor ; Cell Proliferation ; Glioblastoma ; Glioma ; pathology ; Humans ; Phosphotransferases (Alcohol Group Acceptor) ; metabolism ; RNA, Small Interfering
3.N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points.
Md Ariful ISLAM ; Syeda Ridita SHARIF ; Hyunsook LEE ; Dae Hyun SEOG ; Il Soo MOON
Experimental & Molecular Medicine 2015;47(8):e177-
N-acetylglucosamine kinase (GlcNAc kinase or NAGK) is a ubiquitously expressed enzyme in mammalian cells. Recent studies have shown that NAGK has an essential structural, non-enzymatic role in the upregulation of dendritogenesis. In this study, we conducted yeast two-hybrid screening to search for NAGK-binding proteins and found a specific interaction between NAGK and dynein light-chain roadblock type 1 (DYNLRB1). Immunocytochemistry (ICC) on hippocampal neurons using antibodies against NAGK and DYNLRB1 or dynein heavy chain showed some colocalization, which was increased by treating the live cells with a crosslinker. A proximity ligation assay (PLA) of NAGK-dynein followed by tubulin ICC showed the localization of PLA signals on microtubule fibers at dendritic branch points. NAGK-dynein PLA combined with Golgi ICC showed the colocalization of PLA signals with somal Golgi facing the apical dendrite and with Golgi outposts in dendritic branch points and distensions. NAGK-Golgi PLA followed by tubulin or DYNLRB1 ICC showed that PLA signals colocalize with DYNLRB1 at dendritic branch points and at somal Golgi, indicating a tripartite interaction between NAGK, dynein and Golgi. Finally, the ectopic introduction of a small peptide derived from the C-terminal amino acids 74-96 of DYNLRB1 resulted in the stunting of hippocampal neuron dendrites in culture. Our data indicate that the NAGK-dynein-Golgi tripartite interaction at dendritic branch points functions to regulate dendritic growth and/or branching.
Amino Acid Sequence
;
Animals
;
Cells, Cultured
;
Cytoplasmic Dyneins/chemistry/*metabolism
;
Dendrites/metabolism
;
Golgi Apparatus/metabolism
;
HEK293 Cells
;
Hippocampus
;
Humans
;
Molecular Sequence Data
;
Neurons/*metabolism
;
Phosphotransferases (Alcohol Group Acceptor)/*metabolism
;
Protein Interaction Maps
;
Rats, Sprague-Dawley
;
Tubulin
4.Cloning and expression analysis of 4- (cytidine-5-diphospho) -2-C-methyl-D-erythritol kinase gene in Tripterygium wilfordii.
Yu-ru TONG ; Ping SU ; Yu-jun ZHAO ; Meng ZHANG ; Xiu-juan WANG ; Tian-yuan HU ; Wei GAO ; Lu-qi HUANG
China Journal of Chinese Materia Medica 2015;40(21):4165-4170
4-(Cytidine-5-diphospho) -2-C-methyl-D-erythritol kinase is a key enzyme in the biosynthesis pathway of terpenoids. According to the transcriptome database, the specific primers were designed and used in PCR. The bioinformatic analysis of the sequenced TwCMK gene was performed in several bioinformatics software. The Real-time fluorescence quantification polymerase chain reaction (RT-qPCR) were used to detect the expression levels of TwCMK from T. wilfordii after elicitor MeJA supplied. The results showed that the full length of TwCMK cDNA was 1 732 bp encoding 387 amino acids. The theoretical isoelectric point of the putative TwCMK protein was 5.79 and the molecular weight was about 42.85 kDa. MeJA stimulated the rising of TwCMK expression in suspension cell and signally impacted at 24 h. The research provides a basis for further study on the regulation of terpenoid secondary metabolism and biological synthesis.
Amino Acid Sequence
;
Cloning, Molecular
;
Computational Biology
;
Gene Expression Regulation, Plant
;
Models, Molecular
;
Molecular Sequence Data
;
Phosphotransferases (Alcohol Group Acceptor)
;
chemistry
;
genetics
;
metabolism
;
Phylogeny
;
Plant Proteins
;
chemistry
;
genetics
;
metabolism
;
Sequence Alignment
;
Tripterygium
;
chemistry
;
enzymology
;
genetics
5.Inhibitions of SphK1 inhibitor SKI II on cell cycle progression and cell invasion of hepatoma HepG2 cells.
Cai-Xia ZHANG ; Hong LIU ; Yu-Yan GONG ; Hong-Wei HE ; Rong-Guang SHAO
Acta Pharmaceutica Sinica 2014;49(2):204-208
Sphingosine kinase 1 (SphK1) plays critical roles in cell biological functions. Here we investigated the effects of SphK1 inhibitor SKI II on hepatoma HepG2 cell cycle progression and invasion. Cell survival was determined by SRB assay, cell cycle progression was assayed by flow cytometry, the ability of cell invasion was measured by Matrigel-Transwell assay and protein expression was detected by Western blotting. The results showed that SKI II markedly inhibited HepG2 cell survival in a dose-dependent manner, induced G1 phase arrest in HepG2 cell and inhibited cell invasion. SKI II markedly decreased the expressions of G1-phase-related proteins CDK2, CDK4 and Cdc2 and the levels of cell invasion-associated proteins MMP2 and MMP9. The results showed that SKI II inhibited cell cycle progression and cell invasion, implying SphK1 as a potential target for hepatoma treatment.
CDC2 Protein Kinase
;
Cell Movement
;
drug effects
;
Cell Survival
;
drug effects
;
Cyclin-Dependent Kinase 2
;
metabolism
;
Cyclin-Dependent Kinase 4
;
metabolism
;
Cyclin-Dependent Kinases
;
metabolism
;
G1 Phase
;
drug effects
;
Hep G2 Cells
;
Humans
;
Matrix Metalloproteinase 2
;
metabolism
;
Matrix Metalloproteinase 9
;
metabolism
;
Phosphotransferases (Alcohol Group Acceptor)
;
antagonists & inhibitors
;
Thiazoles
;
pharmacology
6.Sphingosine Kinase-1/sphingosine 1-phosphate pathway in diabetic nephropathy.
Yanhui DENG ; Tian LAN ; Juan HUANG ; Heqing HUANG
Chinese Medical Journal 2014;127(16):3004-3010
OBJECTIVEDiabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide and its prevalence continues to increase. Currently, therapies for DN provide only partial renoprotection; hence new targets for therapeutic intervention need to be identified. In this review, we summarized the new target, sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) pathway, explored its potential therapeutic role in the prevention and treatment of DN.
DATA SOURCESMost relevant articles were mainly identified by searching PubMed in English.
STUDY SELECTIONMainly original articles and critical review articles by major pioneer investigators in this field were selected to be reviewed.
RESULTSSphK1/S1P pathway can be activated by hyperglycemia, advanced glycation end products, and many pro-inflammatory cytokines, which leads to fibronectin, transforming growth factor-β1 up-regulation and AP-1 activation. And then it could promote glomerular mesangial cells proliferation and extracellular matrix accumulation, mediating the initiation and progression of diabetic renal fibrosis.
CONCLUSIONSSphK1/S1P pathway is closely correlated with the pathogenesis of DN. The results suggest that SphK1/S1P pathway as a new target for clinically improving DN in future is of great prospect.
Diabetic Nephropathies ; enzymology ; metabolism ; Extracellular Matrix ; metabolism ; Humans ; Lysophospholipids ; metabolism ; Phosphotransferases (Alcohol Group Acceptor) ; metabolism ; Signal Transduction ; Sphingosine ; analogs & derivatives ; metabolism
7.Effects of overexpression of NADH kinase gene on ethanol fermentation by Saccharomyces cerevisiae.
Han WANG ; Liang ZHANG ; Guiyang SHI
Chinese Journal of Biotechnology 2014;30(9):1381-1389
Glycerol is the main byproduct in ethanol production by Saccharomyces cerevisiae. In order to improve ethanol yield and the substrate conversion, a cassette about 4.5 kb for gene homologous recombination, gpd2Δ::PGK1(PT)-POS5-HyBR, was constructed and transformed into the haploid strain S. cerevisiae S1 (MATa) to replace the GPD2 gene by POS5 gene. The NADH kinase gene POS5 was successfully over expressed in the recombinant strain S. cerevisiae S3. Comparing with the parent strain, the recombinant strain S. cerevisiae S3 exhibited an 8% increase in ethanol production and a 33.64% decrease in glycerol production in the conical flask fermentation with an initiatory glucose concentration of 150 g/L. Overexpression of NADH kinase gene seems effective in reducing glycerol production and increasing ethanol yield.
Ethanol
;
chemistry
;
Fermentation
;
Glycerol
;
chemistry
;
Industrial Microbiology
;
Mitochondrial Proteins
;
genetics
;
metabolism
;
Phosphotransferases (Alcohol Group Acceptor)
;
genetics
;
metabolism
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
genetics
;
metabolism
8.Sodium butyrate induces apoptosis of human colon cancer cells by modulating ERK and sphingosine kinase 2.
Min XIAO ; Yun Gang LIU ; Meng Chen ZOU ; Fei ZOU
Biomedical and Environmental Sciences 2014;27(3):197-203
OBJECTIVETo investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells.
METHODSAfter the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy.
RESULTSThe U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the U0126-blocked export of SphK2.
CONCLUSIONERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT.
Apoptosis ; drug effects ; physiology ; Butyric Acid ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; HCT116 Cells ; drug effects ; Humans ; Phosphotransferases (Alcohol Group Acceptor) ; genetics ; metabolism ; Protein Kinase C ; genetics ; metabolism ; RNA, Small Interfering ; Signal Transduction ; drug effects
9.Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα as anti-tumor strategy.
Jiangmei LI ; Lunfeng ZHANG ; Zhen GAO ; Hua KANG ; Guohua RONG ; Xu ZHANG ; Chang CHEN
Protein & Cell 2014;5(6):457-468
Our previous studies indicate that phosphatidylinositol 4-kinase IIα can promote the growth of multi-malignant tumors via HER-2/PI3K and MAPK pathways. However, the molecular mechanisms of this pathway and its potential for clinical application remain unknown. In this study, we found that PI4KIIα could be an ideal combinatorial target for EGFR treatment via regulating EGFR degradation. Results showed that PI4KIIα knockdown reduced EGFR protein level, and the expression of PI4KIIα shows a strong correlation with EGFR in human breast cancer tissues (r = 0.77, P < 0.01). PI4KIIα knockdown greatly prolonged the effects and decreased the effective dosage of AG-1478, a specific inhibitor of EGFR. In addition, it significantly enhanced AG1478-induced inhibition of tumor cell survival and strengthened the effect of the EGFR-targeting anti-cancer drug Iressa in xenograft tumor models. Mechanistically, we found that PI4KIIα suppression increased EGFR ligand-independent degradation. Quantitative proteomic analysis by stable isotope labeling with amino acids in cell culture (SILAC) and LC-MS/MS suggested that HSP90 mediated the effect of PI4KIIα on EGFR. Furthermore, we found that combined inhibition of PI4KIIα and EGFR suppressed both PI3K/AKT and MAPK/ERK pathways, and resulted in downregulation of multiple oncogenes like PRDX2, FASN, MTA2, ultimately leading to suppression of tumor growth. Therefore, we conclude that combined inhibition of PI4KIIα and EGFR exerts a multiple anti-tumor effect. Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα presents a novel strategy to combat EGFR-dependent tumors.
Animals
;
Antineoplastic Agents
;
pharmacology
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
ErbB Receptors
;
antagonists & inhibitors
;
metabolism
;
Female
;
HSP90 Heat-Shock Proteins
;
metabolism
;
Humans
;
MCF-7 Cells
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Mice, Nude
;
Minor Histocompatibility Antigens
;
Mitogen-Activated Protein Kinases
;
metabolism
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Phosphotransferases (Alcohol Group Acceptor)
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Quinazolines
;
pharmacology
;
Transplantation, Heterologous
;
Tyrphostins
;
pharmacology
10.Phosphatidylinositol 4-phosphate 5-kinase alpha negatively regulates nerve growth factor-induced neurite outgrowth in PC12 cells.
Experimental & Molecular Medicine 2013;45(3):e16-
Neurite outgrowth, a cell differentiation process involving membrane morphological changes, is critical for neuronal network and development. The membrane lipid, phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), is a key regulator of many important cell surface events of membrane signaling, trafficking and dynamics. This lipid is produced mainly by the type I PI 4-phosphate 5-kinase (PIP5K) family members. In this study, we addressed whether PIP5Kalpha, an isoform of PIP5K, could have a role in neurite outgrowth induced by nerve growth factor (NGF). For this purpose, we knocked down PIP5Kalpha in PC12 rat pheochromocytoma cells by stable expression of PIP5Kalpha microRNA that significantly reduced PIP5Kalpha expression and PIP2 level. Interestingly, NGF-induced neurite outgrowth was more prominent in PIP5Kalpha-knockdown (KD) cells than in control cells. Conversely, add-back of PIP5Kalpha into PIP5Kalpha KD cells abrogated the effect of NGF on neurite outgrowth. NGF treatment activated PI 3-kinase (PI3K)/Akt pathway, which seemed to be associated with reactive oxygen species generation. Similar to the changes in neurite outgrowth, the PI3K/Akt activation by NGF was potentiated by PIP5Kalpha KD, but was attenuated by the reintroduction of PIP5Kalpha. Moreover, exogenously applied PIP2 to PIP5Kalpha KD cells also suppressed Akt activation by NGF. Together, our results suggest that PIP5Kalpha acts as a negative regulator of NGF-induced neurite outgrowth by inhibiting PI3K/Akt signaling pathway in PC12 cells.
Animals
;
Enzyme Activation/drug effects
;
Gene Knockdown Techniques
;
Mice
;
Nerve Growth Factor/*pharmacology
;
Neurites/drug effects/*enzymology
;
PC12 Cells
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphatidylinositol 4,5-Diphosphate/metabolism
;
Phosphorylation/drug effects
;
Phosphotransferases (Alcohol Group Acceptor)/*metabolism
;
Proto-Oncogene Proteins c-akt/metabolism
;
Rats
;
Reactive Oxygen Species/metabolism
;
Signal Transduction/drug effects

Result Analysis
Print
Save
E-mail