2.Polysaccharide of Alocasia cucullata Exerts Antitumor Effect by Regulating Bcl-2, Caspase-3 and ERK1/2 Expressions during Long-Time Administration.
Qi-Chun ZHOU ; Shi-Lin XIAO ; Ru-Kun LIN ; Chan LI ; Zhi-Jie CHEN ; Yi-Fei CHEN ; Chao-Hua LUO ; Zhi-Xian MO ; Ying-Bo LIN
Chinese journal of integrative medicine 2024;30(1):52-61
OBJECTIVE:
To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism.
METHODS:
B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR.
RESULTS:
In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells.
CONCLUSIONS
Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.
Mice
;
Animals
;
Alocasia/metabolism*
;
MAP Kinase Signaling System
;
Caspase 3/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
3.Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.
Yi WANG ; Ming-Qi CHEN ; Lin-Feng DAI ; Hai-Dong ZHANG ; Xing WANG
Chinese journal of integrative medicine 2024;30(3):230-242
OBJECTIVE:
To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.
METHODS:
A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.
RESULTS:
FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).
CONCLUSION
FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
Mice
;
Animals
;
Mitogen-Activated Protein Kinase 14/metabolism*
;
Wolfiporia
;
Lipopolysaccharides/pharmacology*
;
Sepsis/complications*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Oxygen Radioisotopes
4.Multi-omics fusion analysis models with machine learning predict survival of HER2-negative metastatic breast cancer: a multicenter prospective observational study.
Jiani WANG ; Yuwei LIU ; Renzhi ZHANG ; Zhenyu LIU ; Zongbi YI ; Xiuwen GUAN ; Xinming ZHAO ; Jingying JIANG ; Jie TIAN ; Fei MA
Chinese Medical Journal 2023;136(7):863-865
5.Efficacy and clinical outcome of chemotherapy and endocrine therapy as first-line treatment in patients with hormone receptor-positive HER2-negative metastatic breast cancer.
Yang YUAN ; Shaohua ZHANG ; Tao WANG ; Li BIAN ; Min YAN ; Yongmei YIN ; Yuhua SONG ; Yi WEN ; Jianbin LI ; Zefei JIANG
Chinese Medical Journal 2023;136(12):1459-1467
BACKGROUND:
Endocrine therapy (ET) and ET-based regimens are the preferred first-line treatment options for hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (HR+/HER2- MBC), while chemotherapy (CT) is commonly used in clinical practice. The aim of this study was to investigate the efficacy and clinical outcome of ET and CT as first-line treatment in Chinese patients with HR+/HER2- MBC.
METHODS:
Patients diagnosed with HR+/HER2-MBC between January 1st, 1996 and September 30th, 2018 were screened from the Chinese Society of Clinical Oncology Breast Cancer database. The initial and maintenance first-line treatment, progression-free survival (PFS), and overall survival (OS) were analyzed.
RESULTS:
Among the 1877 included patients, 1215 (64.7%) received CT and 662 (35.3%) received ET as initial first-line treatment. There were no statistically significant differences in PFS and OS between patients receiving ET and CT as initial first-line treatment in the total population (PFS: 12.0 vs. 11.0 months, P = 0.22; OS: 54.0 vs . 49.0 months, P =0.09) and propensity score matched population. For patients without disease progression after at least 3 months of initial therapy, maintenance ET following initial CT (CT-ET cohort, n = 449) and continuous schedule of ET (ET cohort, n = 527) had longer PFS than continuous schedule of CT (CT cohort, n = 406) in the total population (CT-ET cohort vs. CT cohort: 17.0 vs . 8.5 months; P <0.01; ET cohort vs . CT cohort: 14.0 vs . 8.5 months; P <0.01) and propensity score matched population. OS in the three cohorts yielded the same results as PFS.
CONCLUSIONS
ET was associated with similar clinical outcome to CT as initial first-line treatment. For patients without disease progression after initial CT, switching to maintenance ET showed superiority in clinical outcome over continuous schedule of CT.
Humans
;
Female
;
Breast Neoplasms/metabolism*
;
Receptor, ErbB-2/metabolism*
;
Progression-Free Survival
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Disease Progression
;
Treatment Outcome
7.Advances of the regulatory mechanism of cyclin, cyclin- dependent kinases and related kinase inhibitors in cell cycle progression.
Jianfeng PAN ; Fangzheng SHANG ; Rong MA ; Youjun RONG ; Yanjun ZHANG
Chinese Journal of Biotechnology 2023;39(4):1525-1547
Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.
Cyclin-Dependent Kinases/metabolism*
;
Cyclins/metabolism*
;
Protein Serine-Threonine Kinases
;
Cell Cycle Proteins/metabolism*
;
Cell Cycle/physiology*
;
Cyclin-Dependent Kinase 2
8.Methylene blue reduces IL-1β levels by enhancing ERK1/2 and AKT phosphorylation to improve diabetic retinopathy in rats.
Huade MAI ; Shenhong GU ; Biwei FU ; Xinbo JI ; Minghui CHEN ; Juming CHEN ; Yunbo ZHANG ; Yunyun LIN ; Chenghong LIU ; Yanling SONG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):423-428
Objective To investigate the neuroprotective effect of methylene blue on diabetic retinopathy in rats. Methods Thirty SD rats were randomly divided into blank, control and experimental groups. The control and experimental groups were induced with diabetes by streptozotocin (STZ) intraperitoneal injection. After 6 weeks of successful modeling, the experimental group received intravitreal injection of methylene blue at a dose of [0.2 mg/(kg.d)], while the control group received an equal amount of dimethyl sulfoxide (DMSO) intravitreal injection, both continuously injected for 7 days. ELISA was used to detect the levels of retinal superoxide dismutase (SOD), 8-iso-prostaglandin F2alpha (iPF2α) and interleukin-1β (IL-1β) in rats. Western blot analysis was used to detect the expression of retinal extracellular signal-regulated kinase 1/2 phosphorylation (p-ERK1/2) and phosphorylated protein kinase B (p-AKT), and PAS staining was used to detect retinal morphological changes. Results Compared with the blank group rats, the retinal SOD activity in the control and experimental group rats was significantly reduced. iPF2α, IL-1β and p-ERK1/2 level increased, while p-AKT level decreased. Compared with the control group, the SOD activity of the experimental group rats increased. iPF2α and IL-1β level went down, while p-ERK1/2 and p-AKT level went up significantly. The overall thickness of the retinal layer and the number of retinal ganglion cells were significantly reduced. Conclusion Methylene blue improves diabetic retinopathy in rats by reducing retinal oxidative stress and enhancing ERK1/2 and AKT phosphorylation.
Rats
;
Animals
;
Diabetic Retinopathy/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mitogen-Activated Protein Kinase 3/metabolism*
;
Interleukin-1beta/metabolism*
;
Methylene Blue/pharmacology*
;
Phosphorylation
;
Rats, Sprague-Dawley
;
MAP Kinase Signaling System
;
Diabetes Mellitus, Experimental/drug therapy*
;
Superoxide Dismutase/metabolism*
9.Viral myocarditis serum exosome-derived miR-320 promotes the apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway and targeting phosphatidylinositol 3-kinase regulatory subunit 1 (Pik3r1).
Xin ZHANG ; Xueqin LI ; Liangyu ZHU ; Guoquan YIN ; Yuan ZHANG ; Kun LYU
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):516-525
Objective To investigate the effect of viral myocarditis serum exosomal miR-320 on apoptosis of cardiomyocytes and its mechanism. Methods The model of viral myocarditis mice was established by intraperitoneal injection of Coxsackie virus B3. Serum exosomes were extracted by serum exosome extraction kit and co-cultured with cardiomyocytes. The uptake of exosomes by cardiomyocytes was detected by laser confocal microscopy. Cardiomyocytes were transfected with miR-320 inhibitor or mimic, and the expression level of miR-320 was detected by real-time quantitative PCR. Flow cytometry was used to detect cardiomyocyte apoptosis rate, and the expression levels of B cell lymphoma 2 (Bcl2) and Bcl2-related X protein (BAX) were tested by Western blot analysis. The prediction of miR-320 target genes and GO and KEGG enrichment analysis were tested by online database. The relationship between miR-320 and its target gene phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) was examined by luciferase reporter gene. The effect of miR-320 on AKT/mTOR pathway protein was detected by Western blot analysis. Results Viral myocarditis serum exosomes promoted cardiomyocyte apoptosis, and increased the level of BAX while the level of Bcl2 was decreased. miR-320 was significantly up-regulated in myocardial tissue of viral myocarditis mice, and both pri-miR-320 and mature of miR-320 were up-regulated greatly in cardiomyocytes. The level of miR-320 in cardiomyocytes treated with viral myocarditis serum exosomes was significantly up-regulated, while transfection of miR-320 inhibitor counteracted miR-320 overexpression and reduced apoptosis rate caused by exosomes. Pik3r1 is the target gene of miR-320, and its overexpression reversed cardiomyocyte apoptosis induced by miR-320 up-regulation. The overexpression of miR-320 inhibited AKT/mTOR pathway activation. Conclusion Viral myocarditis serum exosome-derived miR-320 promotes apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway by targeting Pik3r1.
Mice
;
Animals
;
Myocytes, Cardiac
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Myocarditis/pathology*
;
Exosomes/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
MicroRNAs/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis/genetics*
10.Research Progress of FLT3 Mutation in Acute Myeloid Leukemia --Review.
Journal of Experimental Hematology 2023;31(3):922-926
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic tumor originated from hematopoietic stem cells. FLT3 is an important receptor tyrosine kinase in cell signal transduction pathway and one of the common mutated genes in AML. AML patients with FLT3-ITD mutation have a poor prognosis and tendency to relapse. Therefore, early identification of FLT3 gene mutation and selection of appropriate treatment are particularly important. Currently, the small moleculetargeted drugs have been new treatment methods for AML patients with FLT3-ITD mutation, but accompanied drug resistance need to be solved. This paper reviews the mechanism of FLT3 mutation, the clinical significance of FLT3 mutation in AML, FLT3 inhibitors and drug resistance mechanism.
Humans
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
;
Signal Transduction
;
Receptor Protein-Tyrosine Kinases/therapeutic use*
;
Leukemia, Myeloid, Acute/drug therapy*
;
fms-Like Tyrosine Kinase 3/genetics*

Result Analysis
Print
Save
E-mail