1.A 4-year cohort study of the effects of PNPLA3 rs738409 genotypes on liver fat and fibrosis and gut microbiota in a non-fatty liver population.
Satoshi SATO ; Chikara IINO ; Takafumi SASADA ; Keisuke FURUSAWA ; Kenta YOSHIDA ; Kaori SAWADA ; Tatsuya MIKAMI ; Shinsaku FUKUDA ; Shigeyuki NAKAJI ; Hirotake SAKURABA
Environmental Health and Preventive Medicine 2025;30():17-17
BACKGROUND:
Many factors are associated with the development and progression of liver fat and fibrosis; however, genetics and the gut microbiota are representative factors. Moreover, recent studies have indicated a link between host genes and the gut microbiota. This study investigated the effect of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 (C > G), which has been reported to be most involved in the onset and progression of fatty liver, on liver fat and fibrosis in a cohort study related to gut microbiota in a non-fatty liver population.
METHODS:
This cohort study included 214 participants from the health check-up project in 2018 and 2022 who had non-fatty liver with controlled attenuation parameter (CAP) values <248 dB/m by FibroScan and were non-drinkers. Changes in CAP values and liver stiffness measurement (LSM), liver-related items, and gut microbiota from 2018 to 2022 were investigated separately for PNPLA3 rs738409 CC, CG, and GG genotypes.
RESULTS:
Baseline values showed no difference among the PNPLA3 rs738409 genotypes for any of the measurement items. From 2018 to 2022, the PNPLA3 rs738409 CG and GG genotype groups showed a significant increase in CAP and body mass index; no significant change was observed in the CC genotype group. LSM increased in all genotypes, but the rate of increase was highest in the GG genotype, followed by the CG and CC genotypes. Fasting blood glucose levels increased in all genotypes; however, HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) increased significantly only in the GG genotype. HDL (high-density lipoprotein) and LDL (low-density lipoprotein) cholesterol levels significantly increased in all genotypes, whereas triglycerides did not show any significant changes in any genotype. As for the gut microbiota, the relative abundance of Feacalibacterium in the PNPLA3 rs738409 GG genotype decreased by 2% over 4 years, more than 2-fold compared to CC and GG genotypes. Blautia increased significantly in the CC group.
CONCLUSION
The results suggest that PNPLA3 G-allele carriers of non-fatty liver develop liver fat and fibrosis due to not only obesity and insulin resistance but also the deterioration of gut microbiota, which may require a relatively long course of time, even years.
Humans
;
Gastrointestinal Microbiome
;
Male
;
Female
;
Membrane Proteins/metabolism*
;
Lipase/genetics*
;
Middle Aged
;
Liver Cirrhosis/epidemiology*
;
Cohort Studies
;
Genotype
;
Adult
;
Non-alcoholic Fatty Liver Disease/microbiology*
;
Polymorphism, Single Nucleotide
;
Acyltransferases
;
Phospholipases A2, Calcium-Independent
2.Novel Pathogenic Mutation of PNPLA1 Identified in Autosomal Recessive Congenital Ichthyosis: A Case Report.
Li HAN ; Qian LIJUAN ; Xu NAN ; Huang LI ; Qiao LI-XING
Chinese Medical Sciences Journal 2022;37(4):349-352
Autosomal recessive congenital ichthyosis (ARCI) is characterized by being born as collodion babies, hyperkeratosis, and skin scaling. We described a collodion baby at birth with mild ectropion, eclabium, and syndactyly. Whole exome sequencing showed a compound heterozygous variant c.[56C>A], p.(Ser19X) and c.[100G>A], p.(Ala34Thr) in the PNPLA1 gene [NM_001145717; exon 1]. The protein encoded by PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. The variant was located in the patatin core domain of PNPLA1 and resulted in a truncated protein which could disrupt the function of the protein. This case report highlights a novel compound heterozygous mutation in PNPLA1 identified in a Chinese child.
Humans
;
Infant, Newborn
;
Acyltransferases/genetics*
;
Ceramides/metabolism*
;
Collodion
;
Ichthyosis, Lamellar/genetics*
;
Lipase/metabolism*
;
Mutation
;
Phospholipases/genetics*
3.Effect of Chaiqin Chengqi Decoction on cholecystokinin receptor 1-mediated signal transduction of pancreatic acinar cells in acute necrotizing pancreatitis rats.
Jia GUO ; Tao JIN ; Zi-Qi LIN ; Xiao-Xiang WANG ; Xiao-Nan YANG ; Qing XIA ; Ping XUE
Chinese journal of integrative medicine 2015;21(1):29-35
OBJECTIVETo investigate the effect of Chaiqin Chengqi Decoction (,CQCQD) on cholecystokinin receptor 1 (CCKR1)-mediated signal transduction of pancreatic acinar cell in rats with acute necrotic pancreatitis (ANP).
METHODSTwenty-seven Sprague-Dawley rats were randomized into three groups: the control group, the ANP group, and the CQCQD group (9 in each group). ANP rats were induced by two intraperitoneal injections of 8% L-arginine (pH=7.0, 4.4 g/kg) over a 2-h period. Rats were treated with 1.5 mL/100 g body weight of CQCQD (CQCQD group) or physiological saline (control and ANP groups) at 2 h interval. And 6 h after induction, pancreatic tissues were collected for histopathological examination. Pancreatic acinar cells were isolated for determination of CCKR1 mRNA and protein expression, phospholipase C (PLC) and inositol-1,4,5-triphosphate (IP3), and determination of fluorescence intensity (FI) as a measure of intracellular calcium ion concentration [Ca(2+)]i.
RESULTSThe pancreatic histopathological score (6.2 ± 1.1) and the levels of PLC (1,187.2 ± 228.2 μg/mL) and IP3 (872.2 ± 88.4 μg/mL) of acinar cells in the ANP group were higher than those in the control (2.8 ± 0.4, 682.5 ± 121.8 μg/mL, 518.4 ± 115.8 μg/mL) and the CQCQD (3.8 ± 0.8, 905.3 ± 78.5 μg/mL, 611.0 ± 42.5 μg/mL) groups (P<0.05). [Ca(2+)]i FI for the ANP group (34.8±27.0) was higher than that in the control (5.1 ± 2.2) and CQCQD (12.6 ± 2.5) groups (P<0.05). The expression of pancreatic acinar cell CCKR1 mRNA in the ANP group was up-regulated (expression ratio=1.761; P=0.024) compared with the control group. The expression of pancreatic acinar cell CCKR1 mRNA in the CQCQD group was down-regulated (expression ratio=0.311; P=0.035) compared with the ANP group. The ratio of gray values of the CCKR1 and β-actin in the ANP group (1.43 ± 0.17) was higher than those in the control (0.70 ± 0.15) and CQCQD (0.79 ± 0.11) groups (P<0.05).
CONCLUSIONSPancreatic acinar cell calcium overload of ANP induced by L-arginine was related to the up-regulated expressions of pancreatic acinar cell CCKR1 mRNA and protein. CQCQD can down-regulate expressions of pancreatic acinar cell CCKR1 mRNA and protein to reduce the PLC and IP3 of pancreatic acinar cells, relieving the calcium overload and reducing the pathological changes in rats with ANP.
Acinar Cells ; drug effects ; metabolism ; Animals ; Blotting, Western ; Calcium ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Fluorescence ; Gene Expression Regulation ; drug effects ; Inositol 1,4,5-Trisphosphate ; metabolism ; Pancreas ; pathology ; Pancreatitis, Acute Necrotizing ; drug therapy ; pathology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Receptors, Cholecystokinin ; genetics ; metabolism ; Signal Transduction ; drug effects ; Type C Phospholipases ; metabolism
4.Epidural Dexamethasone Decreased Inflammatory Hyperalgesia and Spinal cPLA2 Expression in a Rat Formalin Test.
Sam Hong MIN ; Jung Sub SOH ; Ji Yong PARK ; Sung Uk CHOI ; Hye Won LEE ; Jae Jin LEE ; Jae Hwan KIM
Yonsei Medical Journal 2014;55(6):1631-1639
PURPOSE: The aim of this study was to investigate the effect of epidural dexamethasone on analgesia and cytosolic phospholipase A2 (cPLA2) expression in the spinal cord in a rat formalin test. MATERIALS AND METHODS: Epidural dexamethasone injection was performed to Sprague-Dawley rats with a 25 gauge needle under fluoroscopy. Following the epidural injection, a formalin induced pain behavior test was performed. Next, the spinal cords corresponding to L4 dorsal root ganglion was extracted to observe the cPLA2 expression. RESULTS: There were no differences in pain response during phase I among the groups. The phase II pain response in 300 microg of epidural dexamethasone group decreased as compared to control, 30 microg of epidural dexamethasone, 100 microg of epidural dexamethasone, and 300 microg of systemic dexamethasone groups. The expression of cPLA2 decreased in Rexed laminae I-II in 300 microg of the epidural dexamethasone group compared with the ones in the control group. CONCLUSION: Taken together, these results suggest that 300 microg of epidural dexamethasone has an attenuating effect on the peripheral inflammatory tissue injury induced hyperalgesia and this effect is mediated through the inhibition of intraspinal cPLA2 expression and the primary site of action is the laminae I-II of the spinal cord.
Animals
;
Anti-Inflammatory Agents/*pharmacology
;
Dexamethasone/*pharmacology
;
Formaldehyde/*adverse effects
;
Group IV Phospholipases A2/*metabolism
;
Hyperalgesia/*drug therapy
;
Injections, Epidural
;
Male
;
Pain/chemically induced/*metabolism
;
Pain Measurement
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord/*metabolism
5.Cloning, expression of phospholipase A1 from Serratia liquefaciens and auto-induction fermentation by lactose.
Jinlei YAN ; Liang ZHANG ; Zhenghua GU ; Zhongyang DING ; Guiyang SHI
Chinese Journal of Biotechnology 2013;29(6):853-856
To produce recombinant phospholipase A(1) (PLA(1)) by Escherichian coli, the pla gene encoding PLA(1) was amplified from Serratia liquefaciens by PCR and cloned into two vectors pET20-b(+) and pET28-a(+). The two recombinant plasmids were then transformed into E. coli BL21 (DE3) individually to express PLA(1). E. coli BL21(DE3)/pET28a-pla yielded extracellular PLA(1) with an activity of 40.8 U/mL in batch cultivations of shaken flasks by auto-induction, which was accounted for 91% of total enzyme activity. On the basis of primal auto-induction medium, the optimized fermentation medium of PLA(1) contained tryptone 10 g/L, yeast extract 5 g/L, glucose 0.8 g/L, lactose 5 g/L, Na2HPO4 25 mmol/L, KH2PO4 25 mmol/L and 1 mmol/L MgSO4 (final concentration). Glycine (7.5 g/L) was added 6 h after inoculated. After incubated at 37 degrees C for 24 h, extracellular enzyme activity reached 128.7 U/mL.
Cloning, Molecular
;
Culture Media
;
Escherichia coli
;
genetics
;
growth & development
;
metabolism
;
Fermentation
;
Lactose
;
pharmacology
;
Phospholipases A1
;
biosynthesis
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Serratia liquefaciens
;
enzymology
6.Role of phospholipase C in cytoskeleton rearrangements of dendritic cells invaded by Mycobacterium tuberculosis.
Shuiling XU ; Yan XU ; Jia HUANG ; Hongyan FAN ; Mengmei JIN
Journal of Zhejiang University. Medical sciences 2013;42(2):184-191
OBJECTIVETo investigate the role of phospholipase C(PLC) in cytoskeleton rearrangement of mouse dendritic cells invaded by Mycobacterium tuberculosis.
METHODSMouse dendritic DC2.4 cells were co-cultured with Mycobacterium tuberculosis H37Rv. F-actin of DC2.4 cells were strained with phalloidin-TRITC, the microtubule was stained with anti-β-tubulin monoclonal antibody and FITC-conjugated AffiniPure anti-mouse IgG. The changes of cytoskeleton in DC2.4 cells induced by Mycobacterium tuberculosis H37Rv were determined by fluorescence microscopy and the rates of F-actin rearrangements were calculated. The expressions of PLC in cytoplasm and cytomembrane of DC2.4 cells were measured by ELISA. DC2.4 cells were pretreated with PLC inhibitor U73122, then F-actin rearrangements induced by invasion of Mycobacterium tuberculosis were observed.
RESULTSBacterial invasion was observed while DC2.4 cells were co-incubated with Mycobacterium tuberculosis H37Rv for 2 h. The rates of invasion were (26.1 ± 4.5)%, (39.9 ± 5.6)%, (51.2 ±5.9)%, (57.9 ± 6.1)% and (63.9 ± 6.8)% at 4, 6, 8, 10 and 12 h of co-culture, respectively; while those were (13.6 ± 3.1)%, (14.2 ± 3.9)%, (15.1 ± 4.3)%, (16.8 ± 4.0)% and (18.3 ± 5.2)% after blocked by PLC, respectively. The rates of the F-actin rearrangements at 2, 4, 6, 8, 10 and 12 h after DC2.4 cells were invaded by H37Rv were (26.9 ± 1.5)%, (59.3 ± 2.8)%, (72.7 ± 4.8)%, (78.2 ± 5.9)%, (63.3 ± 2.9)% and (43.2 ± 2.6)%, respectively; while those were (18.5 ± 1.2)%, (22.3 ± 1.7)%, (3.6 ± 2.5)%, (24.8 ± 2.3)%, (22.3 ± 1.3)% and (23.8 ± 1.8)% after blocked by PLC, respectively. There were no changes of the microtubule observed in DC2.4 cells at the same time points. The rates of the F-actin rearrangements before blocked by PLC were higher than those after PLC blockade at 4, 6, 8 and 10 h (P <0.05). The expressions of PLC in cytomembrane in DC2.4 cells increased after 2 h and reached its highest level at 8 h. The PLC inhibitor U73122 inhibited the expressions of PCL in cytomembrane of DC2.4 cells, but not in cytoplasm.
CONCLUSIONMycobacterium tuberculosis can provoke to F-actin rearrangements through PLC molecule, which would further lead to Mycobacterium tuberculosis invasion of DC2.4 cells.
Actins ; metabolism ; Animals ; Cell Line ; Coculture Techniques ; Cytoskeleton ; metabolism ; Dendritic Cells ; cytology ; microbiology ; Mice ; Microtubules ; metabolism ; Mycobacterium tuberculosis ; pathogenicity ; Type C Phospholipases ; metabolism
7.Effects of sevoflurane on pulmonary cytosolic phospholipase A₂ and clara cell secretory protein expressions in rabbits with one-lung ventilation-induced lung injury.
Rui LIU ; Yong YANG ; Yanhua LI ; Jiang LI ; Qingjie MA ; Yanhua ZHAO ; Dianhua WANG
Journal of Southern Medical University 2013;33(4):469-473
OBJECTIVETo investigate the effects of sevoflurane on cytosolic phospholipase A₂ (C-PLA₂) and clara cell secretory protein (CCSP) in lung tissues of rabbits with one-lung ventilation (OLV)-induced lung injuries.
METHODSThirty-six healthy Japanese white rabbits were randomized into sham-operated group, OLV group, and OLV plus sevoflurane group subdivided into 4 subgroups with sevoflurane concentrations of 1%, 2%, 3% and 4%. CCSP and C-PLA₂ mRNA and protein expressions in rabbit lung tissues were detected by Western blotting and real-time PCR, and the content of arachidonic acid (AA) was measured using ELISA. The severities of the lung injury were evaluated according to lung wet/dry weight (W/D) ratio and histological scores.
RESULTSIn the OLV group and OLV+ sevoflurane groups, pulmonary CCSP expressions were significantly lower, while C-PLA₂ expression, lung W/D ratios and lung histological scores were significantly higher than those in the sham-operated group (P<0.05). Compared with OLV group, the OLV+sevoflurane groups showed significantly increased expressions of CCSP and reduced C-PLA₂ expression, lung W/D ratios and histological scores (P<0.05). In the 4 OLV+sevoflurane groups, CCSP expressions underwent no significant changes as sevoflurane concentration increased, but C-PLA₂ expressions, lung W/D ratios and histological scores all decreased gradually as the concentrations of sevoflurane increased (P<0.05).
CONCLUSIONOLV can result in down-regulated CCSP expressions and up-regulated C-PLA₂ expressions in rabbit lung tissues. Sevoflurane can protect against OLV-induced acute lung injury possibly by inhibiting C-PLA₂ expression via up-regulation of CCSP expressions or through other mechanisms resulting in down-regulated expression of C-PLA₂.
Animals ; Female ; Lung ; metabolism ; pathology ; Male ; Methyl Ethers ; pharmacology ; One-Lung Ventilation ; adverse effects ; Phospholipases A2 ; metabolism ; Rabbits ; Uteroglobin ; metabolism ; Ventilator-Induced Lung Injury ; metabolism
8.Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils.
Young Su JUNG ; Ha Young LEE ; Sang Doo KIM ; Joon Seong PARK ; Jung Kuk KIM ; Pann Ghill SUH ; Yoe Sik BAE
Experimental & Molecular Medicine 2013;45(6):e27-
Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (beta-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.
Activating Transcription Factor 2/metabolism
;
Animals
;
Cell Separation
;
Chemokines/*biosynthesis
;
Chemotaxis/*drug effects
;
Culture Media, Conditioned/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
GTP-Binding Proteins/metabolism
;
Humans
;
JNK Mitogen-Activated Protein Kinases/metabolism
;
Lipopolysaccharides/pharmacology
;
Macrophages/drug effects/metabolism
;
Mice
;
NF-kappa B/metabolism
;
Neutrophils/*cytology/drug effects/enzymology/*metabolism
;
Pertussis Toxin/pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Proto-Oncogene Proteins c-akt/metabolism
;
Receptors, Wnt/metabolism
;
Type C Phospholipases/metabolism
;
Wnt Proteins/*pharmacology
;
p38 Mitogen-Activated Protein Kinases/metabolism
9.Cytosolic Ca(2+) as a multifunctional modulator is required for spermiogenesis in Ascaris suum.
Yunlong SHANG ; Lianwan CHEN ; Zhiyu LIU ; Xia WANG ; Xuan MA ; Long MIAO
Protein & Cell 2013;4(6):456-466
The dynamic polar polymers actin filaments and microtubules are usually employed to provide the structural basis for establishing cell polarity in most eukaryotic cells. Radially round and immotile spermatids from nematodes contain almost no actin or tubulin, but still have the ability to break symmetry to extend a pseudopod and initiate the acquisition of motility powered by the dynamics of cytoskeleton composed of major sperm protein (MSP) during spermiogenesis (sperm activation). However, the signal transduction mechanism of nematode sperm activation and motility acquisition remains poorly understood. Here we show that Ca(2+) oscillations induced by the Ca(2+) release from intracellular Ca(2+) store through inositol (1,4,5)-trisphosphate receptor are required for Ascaris suum sperm activation. The chelation of cytosolic Ca(2+) suppresses the generation of a functional pseudopod, and this suppression can be relieved by introducing exogenous Ca(2+) into sperm cells. Ca(2+) promotes MSP-based sperm motility by increasing mitochondrial membrane potential and thus the energy supply required for MSP cytoskeleton assembly. On the other hand, Ca(2+) promotes MSP disassembly by activating Ca(2+)/calmodulin-dependent serine/threonine protein phosphatase calcineurin. In addition, Ca(2+)/camodulin activity is required for the fusion of sperm-specifi c membranous organelle with the plasma membrane, a regulated exocytosis required for sperm motility. Thus, Ca(2+) plays multifunctional roles during sperm activation in Ascaris suum.
Animals
;
Ascaris suum
;
metabolism
;
Calcineurin
;
metabolism
;
Calcium
;
metabolism
;
Calmodulin
;
metabolism
;
Cytoskeleton
;
metabolism
;
Cytosol
;
metabolism
;
Egtazic Acid
;
analogs & derivatives
;
pharmacology
;
Helminth Proteins
;
metabolism
;
Inositol 1,4,5-Trisphosphate Receptors
;
metabolism
;
Male
;
Membrane Potential, Mitochondrial
;
physiology
;
Mitochondria
;
metabolism
;
Pseudopodia
;
metabolism
;
Signal Transduction
;
Sperm Motility
;
Spermatids
;
drug effects
;
physiology
;
Spermatogenesis
;
Type C Phospholipases
;
metabolism
10.Linoleic acid activates GPR40/FFA1 and phospholipase C to increase Ca2+i release and insulin secretion in islet beta-cells.
Yi-Jun ZHOU ; Yu-Ling SONG ; Hui ZHOU ; Yan LI
Chinese Medical Sciences Journal 2012;27(1):18-23
OBJECTIVETo elucidate GPR40/FFA1 and its downstream signaling pathways in regulating insulin secretion.
METHODSGPR40/FFA1 expression was detected by immunofluorescence imaging. We employed linoleic acid (LA), a free fatty acid that has a high affinity to the rat GPR40, and examined its effect on cytosolic free calcium concentration ([Ca2+]i) in primary rat beta-cells by Fluo-3 intensity under confocal microscopy recording. Downregulation of GPR40/FFA1 expression by antisense oligonucleotides was performed in pancreatic beta-cells, and insulin secretion was assessed by enzyme-linked immunosorbent assay.
RESULTSLA acutely stimulated insulin secretion from primary cultured rat pancreatic islets. LA induced significant increase of [Ca2+]i in the presence of 5.6 mmol/L and 11.1 mmol/L glucose, which was reflected by increased Fluo-3 intensity under confocal microscopy recording. LA-stimulated increase in [Ca2+]i and insulin secretion were blocked by inhibition of GPR40/FFA1 expression in beta-cells after GPR40/FFA1-specific antisense treatment. In addition, the inhibition of phospholipase C (PLC) activity by U73122, PLC inhibitor, also markedly inhibited the LA-induced [Ca2+]i increase.
CONCLUSIONLA activates GPR40/FFA1 and PLC to stimulate Ca2+ release, resulting in an increase in [Ca2+]i and insulin secretion in rat islet beta-cells.
Animals ; Calcium ; metabolism ; Enzyme Activation ; Insulin ; secretion ; Insulin-Secreting Cells ; drug effects ; metabolism ; secretion ; Linoleic Acid ; pharmacology ; Male ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; physiology ; Type C Phospholipases ; physiology

Result Analysis
Print
Save
E-mail