1.Inhibition of phospholipase D2 induces autophagy in colorectal cancer cells.
Won Chan HWANG ; Mi Kyoung KIM ; Ju Hyun SONG ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2014;46(12):e124-
Autophagy is a conserved lysosomal self-digestion process used for the breakdown of long-lived proteins and damaged organelles, and it is associated with a number of pathological processes, including cancer. Phospholipase D (PLD) isozymes are dysregulated in various cancers. Recently, we reported that PLD1 is a new regulator of autophagy and is a potential target for cancer therapy. Here, we investigated whether PLD2 is involved in the regulation of autophagy. A PLD2-specific inhibitor and siRNA directed against PLD2 were used to treat HT29 and HCT116 colorectal cancer cells, and both inhibition and genetic knockdown of PLD2 in these cells significantly induced autophagy, as demonstrated by the visualization of light chain 3 (LC3) puncta and autophagic vacuoles as well as by determining the LC3-II protein level. Furthermore, PLD2 inhibition promoted autophagic flux via the canonical Atg5-, Atg7- and AMPK-Ulk1-mediated pathways. Taken together, these results suggest that PLD2 might have a role in autophagy and that its inhibition might provide a new therapeutic basis for targeting autophagy.
Autophagy/*drug effects
;
Cell Line, Tumor
;
Colorectal Neoplasms/enzymology/*genetics/*therapy
;
Genetic Therapy
;
HCT116 Cells
;
Humans
;
Phospholipase D/*antagonists & inhibitors/*genetics/metabolism
;
Quinolines/*pharmacology
;
*RNA Interference
;
RNA, Small Interfering/genetics/pharmacology
;
Signal Transduction/drug effects
;
Spiro Compounds/*pharmacology
2.Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells.
Ju Cheol SON ; Dong Woo KANG ; Kwang Mo YANG ; Kang Yell CHOI ; Tae Gen SON ; Do Sik MIN
Experimental & Molecular Medicine 2013;45(8):e38-
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.
Breast Neoplasms/*drug therapy/*enzymology/pathology
;
Cell Death/drug effects/radiation effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects/radiation effects
;
DNA Damage
;
Enzyme Activation/drug effects/radiation effects
;
Enzyme Inhibitors/*pharmacology/*therapeutic use
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Female
;
Humans
;
JNK Mitogen-Activated Protein Kinases/metabolism
;
Phospholipase D/*antagonists & inhibitors/metabolism
;
Radiation Tolerance/*drug effects
;
Radiation, Ionizing
;
p38 Mitogen-Activated Protein Kinases/metabolism
3.Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic beta cells.
Wei na MA ; Shin Young PARK ; Joong Soo HAN
Experimental & Molecular Medicine 2010;42(6):456-464
As glucose is known to induce insulin secretion in pancreatic beta cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic beta-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.
ADP-Ribosylation Factors/metabolism/physiology
;
Animals
;
Basic Helix-Loop-Helix Transcription Factors/metabolism/physiology
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic/drug effects
;
Glucose/*pharmacology
;
Insulin/*secretion
;
Insulin-Secreting Cells/*drug effects/enzymology/metabolism/secretion
;
Intracellular Signaling Peptides and Proteins/metabolism/physiology
;
Mice
;
Models, Biological
;
Oligodeoxyribonucleotides, Antisense/pharmacology
;
Phospholipase D/antagonists & inhibitors/genetics/metabolism/*physiology
;
Protein-Serine-Threonine Kinases/metabolism/physiology
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism/physiology
;
Signal Transduction/drug effects/genetics
4.Rebamipide-induced downregulation of phospholipase D inhibits inflammation and proliferation in gastric cancer cells.
Dong Woo KANG ; Gyesik MIN ; Do Yoon PARK ; Ki Whan HONG ; Do Sik MIN
Experimental & Molecular Medicine 2010;42(8):555-564
Rebamipide a gastroprotective drug, is clinically used for the treatment of gastric ulcers and gastritis, but its actions on gastric cancer are not clearly understood. Phospholipase D (PLD) is overexpressed in various types of cancer tissues and has been implicated as a critical factor in inflammation and carcinogenesis. However, whether rebamipide is involved in the regulation of PLD in gastric cancer cells is not known. In this study, we showed that rebamipide significantly suppressed the expression of both PLD1 and PLD2 at a transcriptional level in AGS and MKN-1 gastric cancer cells. Downregulation of PLD expression by rebamipide inhibited its enzymatic activity. In addition, rebamipide inhibited the transactivation of nuclear factor kappa B (NFkappaB), which increased PLD1 expression. Rebamipide or PLD knockdown significantly suppressed the expression of genes involved in inflammation and proliferation and inhibited the proliferation of gastric cancer cells. In conclusion, rebamipide-induced downregulation of PLD may contribute to the inhibition of inflammation and proliferation in gastric cancer.
Alanine/*analogs & derivatives/pharmacology
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Down-Regulation/*drug effects
;
Gene Expression Regulation, Neoplastic/*drug effects
;
Humans
;
Inflammation/*enzymology/genetics/pathology
;
Isoenzymes/genetics/metabolism
;
NF-kappa B/metabolism
;
Phospholipase D/*genetics/metabolism
;
Promoter Regions, Genetic/genetics
;
Quinolones/*pharmacology
;
Stomach Neoplasms/*enzymology/genetics/*pathology
;
Transcription, Genetic/drug effects
5.Over-expression of phospholipase D3 inhibits Akt phosphorylation in C2C12 myoblasts.
Junlin ZHANG ; Shuai CHEN ; Shujin ZHANG ; Zhijuan LU ; Heping YANG ; Huayan WANG
Chinese Journal of Biotechnology 2009;25(10):1524-1531
Phospholipase D (PLD) hydrolyzes phosphocholine into choline and phosphatide acid, and these metabolites play an important role in regulating cell physiology and biochemistry. To study the biological function of phospholipase D3 (PLD3) during the insulin stimulation in C2C12 myoblasts, we constructed PLD3 over-expressed cell lines (C2C12/pPLD3) and investigated the phosphorylation of Akt. The results showed that the level of phosphorylated Akt (P-Akt) was significantly increased in control C2C12 cells when insulin concentration was elevated during cell treatment, whereas the level of P-Akt in C2C12/pPLD3 cells was not changed. When extending the time of insulin treatment, P-Akt level in C2C12/pPLD3 cells was increased around 2 folds, but the total level of P-Akt in C2C12/pPLD3 was still lower than that in control group. 1-Butanol, a PLD inhibitor, could completely block Akt phosphorylation in C2C12 cells that even stimulated by insulin. However, 1-Butanol did not inhibit the Akt phosphorylation in C2C12/pPLD3 cells, but increased the phosphorylation up to 6 folds higher than control cells. The level of Akt phosphorylation in control C2C12 cells was increased significantly when stimulated by phosphatidic acid (PA), while there was no change in C2C12/pPLD3 cells with the similar treatment. When cells simulated by both PA and insulin, P-Akt level in both C2C12/pPLD3 cells and C2C12 cells were down regulated. Our observations indicated that PLD3 over expression may inhibit Akt phosphorylation and further block the transduction of insulin signaling in C2C12 cells.
Cell Line
;
Humans
;
Insulin
;
pharmacology
;
Myoblasts
;
cytology
;
metabolism
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Phospholipase D
;
biosynthesis
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt
;
chemistry
;
drug effects
;
Signal Transduction
6.Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells.
Dong Woo KANG ; Ji Young LEE ; Deuk hee OH ; Seon Yang PARK ; Tae Min WOO ; Mi Kyoung KIM ; Mi Hee PARK ; Young Hoon JANG ; Do Sik MIN
Experimental & Molecular Medicine 2009;41(9):678-685
In spite of the importance of phospholipase D (PLD) in cell proliferation and tumorigenesis, little is known about the molecules regulating PLD expression. Thus, identification of small molecules inhibiting PLD expression would be an important advance for PLD-mediated physiology. We examined one such here, denoted "Triptolide", which was identified in a chemical screen for inhibitors of PLD expression using cell assay system based on measurement of PLD promoter activity. Triptolide significantly suppressed the expression of both PLD1 and PLD2 with sub-microM potency in MDA-MB-231 breast cancer cells as analyzed by promoter assay and RT-PCR. Moreover, triptolide abolished the protein level of PLD in a time and dose-dependent manner. Triptolide-induced PLD1 downregulation was also observed in all the cancer cells examined, suggesting a general phenomenon detected in various cancer cells. Decrease of PLD expression by triptolide suppressed both basal and PMA-induced PLD activity. In addition, triptolide inhibited activation of NFkappaB which increased PLD1 expression. Ultimately, downregulation of PLD by triptolide inhibited proliferation of breast cancer cells. Taken together, we demonstrate that triptolide suppresses the expression of PLD via inhibition of NFkappaB activation and then decreases cell proliferation.
Antineoplastic Agents, Alkylating/*pharmacology
;
Breast Neoplasms/drug therapy/enzymology
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Diterpenes/*pharmacology
;
Epoxy Compounds/pharmacology
;
Female
;
Gene Expression Regulation, Neoplastic/*drug effects
;
Humans
;
NF-kappa B/genetics/metabolism
;
Phenanthrenes/*pharmacology
;
Phospholipase D/*genetics/metabolism
7.Lysophosphatidylcholine suppresses apoptosis and induces neurite outgrowth in PC12 cells through activation of phospholipase D2.
Doo Hee YUN ; Eun Su JEON ; Sang Min SUNG ; Sung Ho RYU ; Jae Ho KIM
Experimental & Molecular Medicine 2006;38(4):375-384
Lysophosphatidylcholine (LPC) is a bioactive lipid generated by phospholipase A2-mediated hydrolysis of phosphatidylcholine. In the present study, we demonstrate that LPC stimulates phospholipase D2 (PLD2) activity in rat pheochromocytoma PC12 cells. Serum deprivation induced cell death of PC12 cells, as demonstrated by decreased viability, DNA fragmentation, and increased sub-G1 fraction of cell cycle. LPC treatment protected PC12 cells partially from the cell death and induced neurite outgrowth of the cells. Overexpression of PLD2 drastically enhanced the LPC-induced inhibition of apoptosis and neuritogenesis. Pretreatment of the cells with 1-butanol, a PLD inhibitor, completely abrogated the LPC-induced inhibition of apoptosis and neurite outgrowth in PC12 cells overexpressing PLD2. These results indicate that LPC possesses the neurotrophic effects, such as anti-apoptosis and neurite outgrowth, through activation of PLD2.
Starvation
;
Rats
;
Phospholipase D/antagonists & inhibitors/*metabolism
;
PC12 Cells
;
Neurites/*drug effects
;
Lysophosphatidylcholines/*pharmacology
;
Cell Survival/drug effects
;
Apoptosis/*drug effects
;
Animals
8.Phospholipase D is activated and phosphorylated by casein kinase-II in human U87 astroglioma cells.
Bong Hyun AHN ; Gyesik MIN ; Yoe Sik BAE ; Young Seuk BAE ; Do Sik MIN
Experimental & Molecular Medicine 2006;38(1):55-62
Elevated expression of protein casein kinase II (CKII) stimulated basal phospholipase D (PLD) activity as well as PMA-induced PLD activation in human U87 astroglioma cells. Moreover, CKII-selective inhibitor, emodin and apigenin suppressed PMA-induced PLD activation in a dose-dependent manner as well as basal PLD activity, suggesting the involvement of CKII in the activation of both PLD1 and PLD2. CKII was associated with PLD1 and PLD2 in co-transfection experiments. Furthermore, CKII induced serine/threonine phosphorylation of PLD2 in vivo, and the multiple regions of PLD2 were phosphorylated by CKII in vitro kinase assay using glutathione S-transferase-PLD2 fusion protein fragments. Elevated expression of CKII or PLD increased cell proliferation but pretreatment of cells with 1-butanol suppressed CKII-induced cell proliferation. These results suggest that CKII is involved in proliferation of U87 cells at least in part, through stimulation of PLD activity.
1-Butanol/pharmacology
;
Astrocytoma/*enzymology/metabolism/pathology
;
Blotting, Western
;
Casein Kinase II/analysis/*pharmacology
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Dose-Response Relationship, Drug
;
Enzyme Activation
;
Enzyme Inhibitors/pharmacology
;
Glutathione Transferase/metabolism
;
Humans
;
Kinetics
;
Phospholipase D/genetics/*metabolism
;
Phosphorylation/drug effects
;
Precipitin Tests
;
Recombinant Fusion Proteins/metabolism
;
Research Support, Non-U.S. Gov't
;
Tetradecanoylphorbol Acetate/pharmacology
9.Effect of GPI-PLD on adhesion function of bone marrow mononuclear cell from patients with myeloid leukemia and its mechanism.
Guang-Fen XIAO ; Fang-Ping CHEN ; Bin FU ; Guang-Pin WANG ; Zai-Fu JIAN
Journal of Experimental Hematology 2005;13(3):369-372
To explore the effect of glycosyl-phosphatidyl inositol-specific phospholipase D (GPI-PLD) on the adhesion function of bone marrow mononuclear cell from patients with myeloid leukemia and analyze its mechanism, the activity of GPI-PLD in bone marrow mononuclear cell from the patients were measured by using GPI-anchored placental alkaline phosphatase (PLAP) as substrate and Triton-X114 partitioning; the adhesion rate and CD24 expression of these cells were measured by MTT and immunohistochemical method respectively, when these cells were or were not treated by 1 mmol/L 1,10-phenanthroline for 5 hours. The results showed that the GPI-PLD activity of bone marrow mononuclear cells from the patients was significantly inhibited after being treated by 1 mmol/L 1, 10-phenanthroline for 5 hours [(42.08 +/- 7.21)% vs (5.4 +/- 2.96)%], while the adhesion rate and the expression of CD24 of these cells were increased [(49.78 +/- 26.73)% vs (61.19 +/- 29.14)%, (16.02 +/- 9.68)% vs (18.5 +/- 11.14)%, respectively)]. It is concluded that depression of GPI-PLD activity can increase the adhesion rate of bone marrow mononuclear cells from the patients while the CD24 expression is enhanced.
Adolescent
;
Adult
;
Aged
;
Bone Marrow Cells
;
drug effects
;
metabolism
;
pathology
;
CD24 Antigen
;
biosynthesis
;
Cell Adhesion
;
drug effects
;
Cell Survival
;
drug effects
;
Child
;
Female
;
Humans
;
Immunohistochemistry
;
Leukemia, Myeloid
;
blood
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
pathology
;
Male
;
Middle Aged
;
Phenanthrolines
;
pharmacology
;
Phospholipase D
;
blood
;
metabolism
10.Phosphorylation of phospholipase D1 and the modulation of its interaction with RhoA by cAMP-dependent protein kinase.
Min Jung JANG ; Min Jung LEE ; Hae Young PARK ; Yoe Sik BAE ; Do Sik MIN ; Sung Ho RYU ; Jong Young KWAK
Experimental & Molecular Medicine 2004;36(2):172-178
Agents that elevate cellular cAMP are known to inhibit the activation of phospholipase D (PLD). We investigated whether PLD can be phosphorylated by cAMP-dependent protein kinase (PKA) and PKA-mediated phosphorylation affects the interaction between PLD and RhoA, a membrane regulator of PLD. PLD1, but not PLD2 was found to be phosphorylated in vivo by the treatment of dibutyryl cAMP (dbcAMP) and in vitro by PKA. PKA inhibitor (KT5720) abolished the dbcAMP-induced phosphorylation of PLD1, but dibutyryl cGMP (dbcGMP) failed to phosphorylate PLD1. The association between PLD1 and Val14RhoA in an immunoprecipitation assay was abolished by both dbcAMP and dbcGMP. Moreover, RhoA but not PLD1 was dissociated from the membrane to the cytosolic fraction in dbcAMP-treated cells. These results suggest that both PLD1 and RhoA are phosphorylated by PKA and the interaction between PLD1 and RhoA is inhibited by the phosphorylation of RhoA rather than by the phosphorylation of PLD1.
Bucladesine/pharmacology
;
Carbazoles/pharmacology
;
Cell Line, Tumor
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/*metabolism
;
Dibutyryl Cyclic GMP/pharmacology
;
Enzyme Inhibitors/pharmacology
;
Humans
;
Indoles/pharmacology
;
Phospholipase D/*metabolism
;
Phosphorylation/drug effects
;
Pyrroles/pharmacology
;
Research Support, Non-U.S. Gov't
;
rhoA GTP-Binding Protein/*metabolism

Result Analysis
Print
Save
E-mail