1.Study on the Role and Mechanism of METTL3 Mediating the Up-regulation of m6A Modified Long Non-coding RNA THAP7-AS1 in Promoting the Occurrence of Lung Cancer.
Yu ZHANG ; Yanhong WANG ; Mei LIU
Chinese Journal of Lung Cancer 2024;26(12):919-933
BACKGROUND:
Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.
METHODS:
Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.
RESULTS:
Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).
CONCLUSIONS
LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.
Humans
;
Lung Neoplasms/pathology*
;
RNA, Long Noncoding/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Up-Regulation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Methyltransferases/metabolism*
;
Cullin Proteins/genetics*
2.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
3.PDCD6 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the AKT/GSK3β/β-catenin Pathway.
Shi Yuan WEN ; Yan Tong LIU ; Bing Yan WEI ; Jie Qiong MA ; Yan Yan CHEN
Biomedical and Environmental Sciences 2023;36(3):241-252
OBJECTIVE:
Programmed cell death 6 (PDCD6), a Ca 2+-binding protein, has been reported to be aberrantly expressed in all kinds of tumors. The aim of this study was to explore the role and mechanism of PDCD6 in hepatocellular carcinomas (HCCs).
METHODS:
The expression levels of PDCD6 in liver cancer patients and HCC cell lines were analyzed using bioinformatics and Western blotting. Cell viability and metastasis were determined by methylthiazol tetrazolium (MTT) and transwell assays, respectively. And Western blotting was used to test related biomarkers and molecular pathway factors in HCC cell lines. LY294002, a PI3K inhibitor inhibiting AKT, was used to suppress the AKT/GSK3β/β-catenin pathway to help evaluate the role of this pathway in the HCC carcinogenesis associated with PDCD6.
RESULTS:
The analysis of The Cancer Genome Atlas Database suggested that high PDCD6 expression levels were relevant to liver cancer progression. This was consistent with our finding of higher levels of PDCD6 expression in HCC cell lines than in normal hepatocyte cell lines. The results of MTT, transwell migration, and Western blotting assays revealed that overexpression of PDCD6 positively regulated HCC cell proliferation, migration, and invasion. Conversely, the upregulation of PDCD6 expression in the presence of an AKT inhibitor inhibited HCC cell proliferation, migration, and invasion. In addition, PDCD6 promoted HCC cell migration and invasion by epithelial-mesenchymal transition. The mechanistic investigation proved that PDCD6 acted as a tumor promoter in HCC through the AKT/GSK3β/β-catenin pathway, increasing the expression of transcription factors and cellular proliferation and metastasis.
CONCLUSION
PDCD6 has a tumor stimulative role in HCC mediated by AKT/GSK3β/β-catenin signaling and might be a potential target for HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
beta Catenin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Cell Line
;
Cell Proliferation
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Calcium-Binding Proteins/metabolism*
;
Apoptosis Regulatory Proteins/genetics*
4.Mechanism of total flavonoids of Ziziphora clinopodioides in improving atherosclerosis by regulating PI3K/Akt/mTOR pathway.
Xiao-Yu MA ; Hao-Ran ZHAO ; Hui-Lin QIAO ; You-Cheng ZENG ; Xuan-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(2):465-471
The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.
Animals
;
Mice
;
Apolipoproteins E
;
Atherosclerosis/genetics*
;
Beclin-1
;
Cholesterol, LDL
;
Intercellular Adhesion Molecule-1
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Plaque, Atherosclerotic
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
5.PHF5A Promotes Proliferation and Migration of Non-Small Cell Lung Cancer by Regulating of PI3K/AKT Pathway.
Houhui WANG ; Fanglei LIU ; Chunxue BAI ; Nuo XU
Chinese Journal of Lung Cancer 2023;26(1):10-16
BACKGROUND:
There have been many significant advances in the diagnosis and treatment of non-small cell lung cancer (NSCLC). However, the mechanism underlying the progression of NSCLC is still not clear. Plant homodomain finger-like domain-containing protein 5A (PHF5A) plays an important role in processes of chromatin remodeling, morphological development of tissues and organs and maintenance of stem cell pluripotency. This study aims to investigate the role of PHF5A in the proliferation and migration of NSCLC.
METHODS:
A549 and PC-9 PHF5A overexpression cell lines were constructed. PHF5A expression was decreased in H292 and H1299 cells by using siRNA. Flow cytometry was used to detect the cell cycle. MTT assay and clone formation assay were used to examine the proliferative ability of NSCLC, while migration assay and wound healing assay were performed to evaluate the ability of migration. Western blot analysis was used to measure the expressions of PI3K, p-AKT and the associated downstream factors.
RESULTS:
Up-regulation of PHF5A in A549 and PC-9 cells increased the proliferation rate, while down-regulation of PHF5A in H292 and H1299 cells inhibited the proliferation rate at 24 h, 48 h and 72 h (P<0.05). The metastatic ability was elevated in the PHF5A-overexpresion groups, while reduced in the PHF5A-down-regulation group (P<0.05). In addition, reduced expression of PHF5A induced cell cycle arrest at G1/S phase (P<0.05). Furthermore, decreased expression of PHF5A reduced the expression levels of PI3K, phosphorylation of AKT, c-Myc (P<0.05) and elevated the expression of p21 (P<0.05).
CONCLUSIONS
These results demonstrated that PHF5A may play an important role in progression of NSCLC by regulating the PI3K/AKT signaling pathway.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Gene Expression Regulation, Neoplastic
;
Trans-Activators/genetics*
;
RNA-Binding Proteins/metabolism*
6.RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway.
Chaochao WANG ; Hao XUE ; Rongrong ZHAO ; Zhongzheng SUN ; Xiao GAO ; Yanhua QI ; Huizhi WANG ; Jianye XU ; Lin DENG ; Gang LI
Frontiers of Medicine 2023;17(1):143-155
Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.
Humans
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
MicroRNAs/metabolism*
;
Glioma/genetics*
;
Genes, Tumor Suppressor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Cell Line, Tumor
7.Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma.
Qian WU ; Yong-Bin WANG ; Xiao-Wen CHE ; Hui WANG ; Wei WANG
Journal of Integrative Medicine 2023;21(3):268-276
OBJECTIVE:
Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown.
METHODS:
Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting.
RESULTS:
JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML.
CONCLUSION
JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Junctional Adhesion Molecules/metabolism*
;
Kaempferols/pharmacology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Adenocarcinoma of Lung/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Lung Neoplasms/metabolism*
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
8.Effect of Long Non-Coding RNA LINC01268 on the Malignant Biological Behaviors of Acute Myeloid Leukemia Cells.
Journal of Experimental Hematology 2023;31(6):1608-1616
OBJECTIVE:
To investigate the effect of long non-coding RNA LINC01268 on apoptosis of acute myeloid leukemia (AML) cells and related mechanisms.
METHODS:
The expression levels of LINC01268 and miR-217 in peripheral blood samples from AML patients and AML cell lines HL-60 and KG-1 were detected by qRT-PCR. HL-60 cells were divided into pcDNA3.1-NC, pcDNA3.1-LINC01268, si-NC, si-LINC01268, miR-NC, miR-217 mimics, si-LINC01268 + inhibitor-NC and si-LINC01268+ miR-217 inhibitor groups. The mRNA expressions of LINC01268 and miR-217 were detected by qRT-PCR. The targeting relationship between LINC01268 and miR-217 was detected by dual-luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The expression of cell cycle and apoptosis-related proteins p21, Bcl-2, Bax, caspase-3 and PI3K/AKT signaling pathway-related proteins were detected by Western blot.
RESULTS:
The expression of LINC01268 in peripheral blood samples of AML patients and AML cell lines HL-60 and KG-1 was increased (P < 0.05), and the expression of miR-217 was decreased (P < 0.05). Compared with si-NC group and miR-NC group, the viability of HL-60 cells was decreased in si-LINC01268 group and miR-217 mimics group (P < 0.05), the proportion of cells in G1 phase and apoptosis rate were increased (P < 0.05), the protein expression levels of p21, Bax and caspase-3 were increased (P < 0.05), while the protein expression level of Bcl-2 was decreased (P < 0.05). LINC01268 targeted and negatively regulated the expression of miR-217, and inhibiting the expression of miR-217 partially reversed the effects of LINC01268 interference on the viability, cell cycle and apoptosis of HL-60 cells. Interference with LINC01268 could inhibit the activity of PI3K/AKT signaling pathway. Inhibiting the expression of miR-217 could partially reverse the inhibition of LINC01268 interference on PI3K/AKT signaling pathway.
CONCLUSION
LINC01268 is highly expressed and miR-217 is lowly expressed in AML cells. LINC01268 can promote the activity of PI3K/AKT signaling pathway, increase the survival rate and inhibit the apoptosis of AML cells by targeting miR-217 expression.
Humans
;
Apoptosis
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation
;
Leukemia, Myeloid, Acute/metabolism*
;
MicroRNAs/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Long Noncoding/genetics*
9.Comprehensive assessment of mismatch repair and microsatellite instability status in molecular classification of endometrial carcinoma.
Yan LIU ; Yu Xiang WANG ; Xiao Jie SUN ; Xia TING ; Rui WU ; Xiao Dan LIU ; Cong Rong LIU
Chinese Journal of Obstetrics and Gynecology 2023;58(10):755-765
Objective: To explore the concordance and causes of different mismatch repair (MMR) and microsatellite instability (MSI) detection results in endometrial carcinoma (EC) molecular typing. Methods: A total of 214 EC patients diagnosed from January 2021 to April 2023 were selected at the Department of Pathology, Peking University Third Hospital. The immunohistochemistry (IHC) results of MMR protein were reviewed. Tumor specific somatic mutations, MMR germline mutations, microsatellite scores and tumor mutation burden (TMB) were detected by next-generation sequencing (NGS) with multi-gene panel. Methylation-specific PCR was used to detect the methylation status of MLH1 gene promoter in cases with deficient MLH1 protein expression. In cases with discrepant results between MMR-IHC and MSI-NGS, the MSI status was detected again by PCR (MSI-PCR), and the molecular typing was determined by combining the results of TMB and MLH1 gene promoter methylation. Results: (1) In this study, there were 22 cases of POLE gene mutation subtype, 55 cases of mismatch repair deficient (MMR-d) subtype, 29 cases of p53 abnormal subtype, and 108 cases of no specific molecular profile (NSMP). The median age at diagnosis of MMR-d subtype (54 years old) and the proportion of aggressive histological types (40.0%, 22/55) were higher than those of NSMP subtype [50 years old and 12.0% (13/108) respectively; all P<0.05]. (2) Among 214 patients, MMR-IHC test showed that 153 patients were mismatch repair proficient (MMR-p), 49 patients were MMR-d, and 12 patients were difficult to evaluate directly. MSI-NGS showed that 164 patients were microsatellite stable (MSS; equal to MMR-p), 48 patients were high microsatellite instability (MSI-H; equal to MMR-d), and 2 patients had no MSI-NGS results because the effective sequencing depth did not meet the quality control. The overall concordance between MMR-IHC and MSI-NGS was 94.3% (200/212). All the 12 discrepant cases were MMR-d or subclonal loss of MMR protein by IHC, but MSS by NGS. Among them, 10 cases were loss or subclonal loss of MLH1 and (or) PMS2 protein. Three discrepant cases were classified as POLE gene mutation subtype. In the remaining 9 cases, 5 cases and 3 cases were confirmed as MSI-H and low microsatellite instability (MSI-L) respectively by MSI-PCR, 6 cases were detected as MLH1 gene promoter methylation and 7 cases demonstrated high TMB (>10 mutations/Mb). These 9 cases were classified as MMR-d EC. (3) Lynch syndrome was diagnosed in 27.3% (15/55) of all 55 MMR-d EC cases, and the TMB of EC with MSH2 and (or) MSH6 protein loss or associated with Lynch syndrome [(71.0±26.2) and (71.5±20.1) mutations/Mb respectively] were significantly higher than those of EC with MLH1 and (or) PMS2 loss or sporadic MMR-d EC [(38.2±19.1) and (41.9±24.3) mutations/Mb respectively, all P<0.01]. The top 10 most frequently mutated genes in MMR-d EC were PTEN (85.5%, 47/55), ARID1A (80.0%, 44/55), PIK3CA (69.1%, 38/55), KMT2B (60.0%, 33/55), CTCF (45.5%, 25/55), RNF43 (40.0%, 22/55), KRAS (36.4%, 20/55), CREBBP (34.5%, 19/55), LRP1B (32.7%, 18/55) and BRCA2 (32.7%, 18/55). Concurrent PTEN, ARID1A and PIK3CA gene mutations were found in 50.9% (28/55) of MMR-d EC patients. Conclusions: The concordance of MMR-IHC and MSI-NGS in EC is relatively high.The discordance in a few MMR-d EC are mostly found in cases with MLH1 and (or) PMS2 protein loss or MMR protein subclonal staining caused by MLH1 gene promoter hypermethylation. In order to provide accurate molecular typing for EC patients, MLH1 gene methylation, MSI-PCR, MMR gene germline mutation and TMB should be combined to comprehensively evaluate MMR and MSI status.
Female
;
Humans
;
Middle Aged
;
Class I Phosphatidylinositol 3-Kinases/metabolism*
;
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis*
;
DNA Mismatch Repair/genetics*
;
Endometrial Neoplasms/pathology*
;
Microsatellite Instability
;
Mismatch Repair Endonuclease PMS2/genetics*
;
Molecular Typing
10.Decursin affects proliferation, apoptosis, and migration of colorectal cancer cells through PI3K/Akt signaling pathway.
Yi YANG ; Yan-E HU ; Mao-Yuan ZHAO ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(9):2334-2342
We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
bcl-2-Associated X Protein
;
Vimentin/metabolism*
;
Cell Proliferation
;
Signal Transduction
;
Apoptosis
;
Cell Line, Tumor
;
Colorectal Neoplasms/genetics*
;
Cadherins/genetics*
;
Cell Movement

Result Analysis
Print
Save
E-mail