1.Research progress on strontium modified β-tricalcium phosphate composite biomaterials with immune regulatory properties.
Huanxi LI ; Xingyu SHAN ; Hongda WANG ; Zhimin TIAN ; Chunnuo HE ; Haoqiang ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):511-517
OBJECTIVE:
To review the research progress of strontium (Sr) modified β-tricalcium phosphate composite biomaterials (SrTCP) promoting osteogenesis through immune regulation, and provides reference and theoretical support for the further development and research of SrTCP bone repair materials in bone tissue engineering in the future.
METHODS:
The literature about SrTCP promoting osteogenesis through immune regulation at home and abroad in recent years was extensively reviewed, and the preparation methods, immune mechanism and application of promoting osteogenesis were summarized and analyzed.
RESULTS:
The preparation methods of SrTCP include solid-state reaction sintering method, solution combustion quenching method, direct doping method, ion substitution method, etc. SrTCP has immune regulatory effects, which can play an immune regulatory role in inducing macrophage polarization, inducing angiogenesis and anti oxidative stress to promote osteogenesis.
CONCLUSION
At present, studies have shown that SrTCP can promote bone defect repair through immune regulation. Subsequent studies can start from the control of the optimal repair concentration and release rate of Sr, and further clarify the specific mechanism of SrTCP in promoting angiogenesis and anti oxidative stress, which is helpful to develop new materials for bone defect repair.
Calcium Phosphates/pharmacology*
;
Strontium/pharmacology*
;
Biocompatible Materials/pharmacology*
;
Humans
;
Osteogenesis/drug effects*
;
Tissue Engineering/methods*
;
Bone Substitutes/pharmacology*
;
Bone Regeneration/drug effects*
;
Animals
;
Tissue Scaffolds/chemistry*
;
Neovascularization, Physiologic/drug effects*
;
Macrophages/immunology*
2.Preparation of calcium phosphate nanoflowers and evaluation of their antioxidant and osteogenic induction capabilities in vitro.
Mingyu JIA ; Zhihong CHEN ; Huajian ZHOU ; Yukang ZHANG ; Min WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1203-1211
OBJECTIVE:
To investigate the antioxidant and osteogenic induction capabilities of calcium phosphate nanoflowers (hereinafter referred to as nanoflowers) in vitro at different concentrations.
METHODS:
Nanoflowers were prepared using gelatin, tripolyphosphate, and calcium chloride. Their morphology, microstructure, elemental composition and distribution, diameter, and molecular constitution were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive spectroscopy. Femurs and tibias were harvested from twelve 4-week-old Sprague Dawley rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured using the whole bone marrow adherent method, followed by passaging. The third passage cells were identified as stem cells by flow cytometry and then co-cultured with nanoflowers at concentrations of 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6 mg/mL. Cell counting kit 8 (CCK-8) assay was performed to screen for the optimal concentration that demonstrated the best cell viability, which was subsequently used as the experimental concentration for further studies. After co-culturing BMSCs with the screened concentration of nanoflowers, the biocompatibility of the nanoflowers was verified through live/dead cell staining, scratch assay, and cytoskeleton staining. The antioxidant capacity was assessed by using reactive oxygen species (ROS) fluorescence staining. The in vitro osteoinductive ability was evaluated via alkaline phosphatase (ALP) staining, alizarin red staining, and immunofluorescence staining of osteocalcin (OCN) and Runt-related transcription factor 2 (RUNX2). All the above indicators were compared with the control group of normally cultured BMSCs without the addition of nanoflowers.
RESULTS:
Scanning electron microscopy revealed that the prepared nanoflowers exhibited a flower-like structure; transmission electron microscopy scans discovered that the nanoflowers possessed a multi-layered structure, and high-magnification images displayed continuous atomic arrangements, with the nanoflower diameter measuring (2.00±0.25) μm; energy-dispersive spectroscopy indicated that the nanoflowers contained elements such as C, N, O, P, and Ca, which were uniformly distributed across the flower region; Fourier transform infrared spectroscopy analyzed the absorption peaks of each component, demonstrating the successful preparation of the nanoflowers. Through CCK-8 screening, the concentrations of 0.8, 1.2, and 1.6 mg/mL were selected for subsequent experiments. The live/dead cell staining showed that nanoflowers at different concentrations exhibited good cell compatibility, with the 1.2 mg/mL concentration being the best (P<0.05). The scratch assay results indicated that the cell migration ability in the 1.2 mg/mL group was superior to the other groups (P<0.05). The cytoskeleton staining revealed that the cell morphology was well-extended in all concentration groups, with no significant difference compared to the control group. The ROS fluorescence staining demonstrated that the ROS fluorescence in all concentration groups decreased compared to the control group after lipopolysaccharide induction (P<0.05), with the 1.2 mg/mL group showing the weakest fluorescence. The ALP staining showed blue-purple nodular deposits around the cells in all groups, with the 1.2 mg/mL group being significantly more prominent. The alizarin red staining displayed orange-red mineralized nodules around the cells in all groups, with the 1.2 mg/mL group having more and denser nodules. The immunofluorescence staining revealed that the expressions of RUNX2 and OCN proteins in all concentration groups increased compared to the control group, with the 1.2 mg/mL group showing the strongest protein expression (P<0.05).
CONCLUSION
The study successfully prepares nanoflowers, among which the 1.2 mg/mL nanoflowers exhibits excellent cell compatibility, antioxidant properties, and osteogenic induction capability, demonstrating their potential as an artificial bone substitute material.
Animals
;
Osteogenesis/drug effects*
;
Mesenchymal Stem Cells/drug effects*
;
Calcium Phosphates/pharmacology*
;
Rats, Sprague-Dawley
;
Rats
;
Antioxidants/chemistry*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
;
Nanostructures/chemistry*
;
Tissue Engineering/methods*
;
Bone Marrow Cells/cytology*
;
Coculture Techniques
;
Tissue Scaffolds/chemistry*
;
Male
;
Biocompatible Materials/chemistry*
;
Cell Survival
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cell Proliferation
3.Effect of recombinant human growth hormone on serum Klotho and fibroblast growth factor 23 in children with idiopathic short stature.
Han-Han DONG ; Meng-Meng LI ; Meng SUN ; Ran ZHOU ; Xin-Ying ZHANG ; Ya-Ying CHENG
Chinese Journal of Contemporary Pediatrics 2023;25(11):1143-1149
OBJECTIVES:
To investigate the changes in the serum levels of Klotho, fibroblast growth factor 23 (FGF23), and insulin-like growth factor-1 (IGF-1) in children with idiopathic short stature (ISS) before and after recombinant human growth hormone (rhGH) treatment, as well as the correlation of Klotho and FGF23 with the growth hormone (GH)/IGF-1 growth axis in these children.
METHODS:
A prospective study was conducted on 33 children who were diagnosed with ISS in the Department of Pediatrics, Hebei Provincial People's Hospital, from March 10, 2021 to December 1, 2022 (ISS group). Twenty-nine healthy children, matched for age and sex, who attended the Department of Child Healthcare during the same period, were enrolled as the healthy control group. The children in the ISS group were treated with rhGH, and the serum levels of Klotho, FGF23, and IGF-1 were measured before treatment and after 3, 6, and 9 months of treatment. A correlation analysis was conducted on these indexes.
RESULTS:
There were no significant differences in the serum levels of IGF-1, Klotho, and FGF23 between the ISS and healthy control groups (P>0.05). The serum levels of Klotho, FGF23, and IGF-1 increased significantly in the ISS group after 3, 6, and 9 months of rhGH treatment (P<0.05). In the ISS group, Klotho and FGF23 levels were positively correlated with the phosphate level before treatment (P<0.05). Before treatment and after 3, 6, and 9 months of rhGH treatment, the Klotho level was positively correlated with the IGF-1 level (P<0.05), the FGF23 level was positively correlated with the IGF-1 level (P<0.05), and the Klotho level was positively correlated with the FGF23 level (P<0.05), while Klotho and FGF23 levels were not correlated with the height standard deviation of point (P>0.05).
CONCLUSIONS
The rhGH treatment can upregulate the levels of Klotho, FGF23, and IGF-1 and realize the catch-up growth in children with ISS. Klotho and FGF23 may not directly promote the linear growth of children with ISS, but may have indirect effects through the pathways such as IGF-1 and phosphate metabolism. The consistent changes in Klotho, FGF23 and IGF-1 levels show that there is a synergistic relationship among them in regulating the linear growth of ISS children.
Child
;
Humans
;
Human Growth Hormone/pharmacology*
;
Insulin-Like Growth Factor I/pharmacology*
;
Fibroblast Growth Factor-23
;
Prospective Studies
;
Growth Disorders
;
Phosphates/pharmacology*
;
Body Height
4.Reduning Injection protects flu-infected mice by inhibiting infiltration of inflammatory cells in lung and down-regulating cytokine storm.
Xiao-Lan YE ; Chen-Chen TANG ; Hui LIU ; You HU ; Tian-Nan XIANG ; Yue-Juan ZHENG
China Journal of Chinese Materia Medica 2022;47(17):4698-4706
This study aimed to explore the protective effect of Reduning Injection(RDN) on mice infected by influenza virus A/PR/8(PR8) and its immune regulatory roles during viral infection. In in vivo experiments, female C57 BL/6 mice were randomly divided into phosphate buffered saline(PBS) group, PR8-infected group, oseltamivir treatment group(OSV) and RDN treatment group. After 2 h of PR8 infection, mice in the oseltamivir group were gavaged with oseltamivir 30 mg·kg~(-1), and those in the RDN treatment group were injected intraperitoneally with RDN 1.5 mL·kg~(-1)once per day for seven consecutive days. The body weight of mice in each group was recorded at the same time every morning for 16 consecutive days. The line chart of body weight change was created to analyze the protective effect of RDN on flu-infected mice. The relative mRNA expression of different cytokines(IL-6, TNF-α, MCP-1, IL-1β, MIP-2, IP-10 and IL-10) in lung samples of flu-infected mice was detected by PCR. Flow cytometry was utilized to analyze the composition of immune cells of mouse BALF samples on day 5 after infection. Mouse macrophage cell line RAW264.7 was planted and treated by different concentrations of RDN(150, 300, 600 μg·mL~(-1)) for 24 h or 48 h, and cell proliferation was detected by CCK-8 assay. RAW264.7 cells and mouse primary peritoneal macrophages were stimulated with synthetic single stranded RNA(R837), which elicited the inflammatory response by mimicking the infection of single-stranded RNA viruses. The expression of cytokines and chemokines in the supernatants of above culture system was detected by ELISA and qPCR. On days 4, 5, 6, 7 and 15 after infection, the body weight loss of mice in the RDN treatment group was alleviated compared with that of PR8-infected mice(P<0.05). RDN treatment obviously reduced lung index and the production of IL-6, TNF-α, MCP-1 and MIP-2 in lung tissues of flu-infected mice(P<0.05). The proportions of macrophages, neutrophils and T cells in mouse BALF samples were analyzed by flow cytometry, and compared with PR8-infected mice, RDN decreased the proportion of macrophages in BALF of flu-infected mice(P<0.05), and the proportion of T cells was recovered dramatically(P<0.001). In CCK-8 assay, the concentrations of RDN(150, 300, 600 μg·mL~(-1)) failed to cause cytotoxicity to RAW264.7 cells. In addition, RDN lowered the expression of inflammatory cytokines such as IL-6, TNF-α,MCP-1, IL-1β, RANTES, and IP-10 and even anti-inflammatory cytokine IL-10 in R837-induced macrophages. RDN reduced the infiltration of inflammatory macrophages and the production of excessive inflammatory cytokines, alleviated the body weight loss of flu-infected mice. What's more, RDN restored the depletion of T cells, which might prevent secondary infection and deteriorative progression of the disease. Taken together, RDN may inhibit cytokine production and therefore down-regulate cytokine storm during the infection of influenza virus.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Body Weight
;
Chemokine CCL5/pharmacology*
;
Chemokine CXCL10/pharmacology*
;
Cytokine Release Syndrome
;
Cytokines/genetics*
;
Drugs, Chinese Herbal
;
Female
;
Imiquimod/pharmacology*
;
Interleukin-10
;
Interleukin-6
;
Lung
;
Mice
;
Mice, Inbred C57BL
;
Oseltamivir/pharmacology*
;
Phosphates/pharmacology*
;
RNA
;
RNA, Messenger
;
Sincalide/pharmacology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Weight Loss
5.Analgesic Activity of Jin Ling Zi Powder and Its Single Herbs: A Serum Metabonomics Study.
Cui-Fang WANG ; Xiao-Rong CAI ; Yan-Ni CHI ; Xiao-Yao MIAO ; Jian-Yun YANG ; Bing-Kun XIAO ; Rong-Qing HUANG
Chinese journal of integrative medicine 2022;28(11):1007-1014
OBJECTIVE:
To compare the analgesic effect of Jin Ling Zi Powder (JLZ) and its two single herbs.
METHODS:
The hot plate method was used to induce pain. Totally 36 mice were randomly divided into 6 groups by a complete random design, including control, model, aspirin (ASP, 0.14 g/kg body weight), JLZ (14 g/kg body weight), Corydalis yanhusuo (YHS, 14 g/kg body weight), and Toosendan Fructus (TF, 14 g/kg body weight) groups, 6 mice in each group. The mice in the control and model groups were given the same volume of saline, daily for 2 consecutive weeks. At 30, 60, 90, and 120 min after the last administration, the pain threshold of mice in each group was measured, and the improvement rate of pain threshold was calculated. Serum endogenous metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS).
RESULTS:
There was no statistical difference in pain threshold among groups before administration (P>0.05). After 2 weeks of administration, compared with the model group, the pain threshold in JLZ, YHS, TF and ASP groups were increased to varying degrees (P<0.05). JLZ had the best analgesic effect and was superior to YHS and TF groups. A total of 14 potential biomarkers were screened in serum data analysis and potential biomarkers levels were all reversed to different degrees after the treatment with JLZ and its single herbs. These potential biomarkers were mainly related to glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, aminoacyl-tRNA biosynthesis and inositol phosphate metabolism.
CONCLUSIONS
The analgesic mechanism of JLZ and YHS was mainly due to the combination of glycine and its receptor, producing post-synaptic potential, reducing the excitability of neurons, and weakening the afferent effect of painful information.
Animals
;
Mice
;
Analgesics/therapeutic use*
;
Aspirin/pharmacology*
;
Biomarkers
;
Body Weight
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycine
;
Glyoxylates
;
Inositol Phosphates
;
Isoleucine
;
Leucine
;
Metabolomics/methods*
;
Powders
;
RNA, Transfer
;
Serine
;
Threonine
;
Valine
6.The effect of procyanidin on periprosthetic osteolysis caused by TCP wear particles in the mouse calvaria and its mechanism.
Kun LIN ; Jia-Hao CHEN ; Ze-Hao FANG ; Cheng-Long YE ; Chao-Jie HAN ; Ming YAN ; Jian FANG ; Yun ZHANG
Chinese Journal of Applied Physiology 2019;35(3):250-255
OBJECTIVE:
To investigate the protective effects of procyanidin on periprosthetic osteolysis caused by tricalcium phosphate (TCP) wear particles in the mouse calvaria and its mechanism.
METHODS:
Forty-eight male ICR mice were randomly divided into sham group, TCP group, and procyanidin (0.2 mg/kg, 1 mg/kg, 5 mg/kg)-treated group (n=12). A periprosthetic osteolysis model in the mouse calvaria was established by implanting 30 mg of TCP wear particles onto the surface of bilateral parietal bones following removal of the periosteum. On the 2 day post-operation, procyanidin (1 mg/kg, 5 mg/kg) was locally injected to the calvaria under the periosteum every other day. After 2 weeks, all the mice were sacrificed to collect the blood samples and the calvaria. Periprosthetic osteolysis and osteoclastogenesis in the mouse calvaria were observed by tartrate resistant acid phosphatase (TRAP) staining and HE staining. mRNA levels of TRAP, capthesin K, c-Fos and NFATc1 in the periprosthestic bone tissue were examined by real-time fluorescence quantitative PCR. Serum contents of total anti-oxidation capacity (T-AOC) and MDA, and superoxide dismutase (SOD) activity were determined by chemical colorimetry. Protein expressions of autophagic biomarkers such as Beclin-1 and LC-3 in periprosthetic bone tissue of the calvaria were examined by Western blot.
RESULTS:
Compared with sham group, periprosthetic osteolysis, osteoclastogenesis, mRNA levels of TRAP, capthesin K, c-Fos and NFATc1, and serum MDA content were increased significantly in the TCP group (P<0.05), whereas serum T-AOC level and SOD activity were decreased. The protein expressions of Beclin-1 and LC-3, and the conversion of LC3-II from LC3-I were both up-regulated markedly in the mouse calvaria of TCP group (P<0.05). Compared with TCP group, osteolysis, osteoclastogenesis, mRNA levels of TRAP, capthesin K, c-Fos and NFATc1 and serum MDA content were decreased obviously in the procyanidine group (P<0.05), serum T-AOC level and SOD activity were increased, the expressions of Beclin-1 and LC-3, and the conversion of LC3-II from LC3-I were down-regulated obviously in the mouse calvaria of procyanidin group (P<0.05).
CONCLUSION
Procyanidin has a protective effect of periprosthetic osteolysis caused by TCP wear particles in the mouse calvaia, its mechanism may be mediated by inhibition of oxidative stress and autophagy.
Animals
;
Autophagy
;
Biflavonoids
;
pharmacology
;
Calcium Phosphates
;
adverse effects
;
Catechin
;
pharmacology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Osteolysis
;
Oxidative Stress
;
Proanthocyanidins
;
pharmacology
;
Prostheses and Implants
;
adverse effects
;
Random Allocation
;
Skull
7.Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles.
Kunneng LIANG ; Suping WANG ; Siying TAO ; Shimeng XIAO ; Han ZHOU ; Ping WANG ; Lei CHENG ; Xuedong ZHOU ; Michael D WEIR ; Thomas W OATES ; Jiyao LI ; Hockin H K XU
International Journal of Oral Science 2019;11(2):15-15
Tooth decay is prevalent, and secondary caries causes restoration failures, both of which are related to demineralization. There is an urgent need to develop new therapeutic materials with remineralization functions. This article represents the first review on the cutting edge research of poly(amido amine) (PAMAM) in combination with nanoparticles of amorphous calcium phosphate (NACP). PAMAM was excellent nucleation template, and could absorb calcium (Ca) and phosphate (P) ions via its functional groups to activate remineralization. NACP composite and adhesive showed acid-neutralization and Ca and P ion release capabilities. PAMAM+NACP together showed synergistic effects and produced triple benefits: excellent nucleation templates, superior acid-neutralization, and ions release. Therefore, the PAMAM+NACP strategy possessed much greater remineralization capacity than using PAMAM or NACP alone. PAMAM+NACP achieved dentin remineralization even in an acidic solution without any initial Ca and P ions. Besides, the long-term remineralization capability of PAMAM+NACP was established. After prolonged fluid challenge, the immersed PAMAM with the recharged NACP still induced effective dentin mineral regeneration. Furthermore, the hardness of pre-demineralized dentin was increased back to that of healthy dentin, indicating a complete remineralization. Therefore, the novel PAMAM+NACP approach is promising to provide long-term therapeutic effects including tooth remineralization, hardness increase, and caries-inhibition capabilities.
Amines
;
pharmacology
;
Calcium
;
Calcium Phosphates
;
chemistry
;
pharmacology
;
Dentin
;
chemistry
;
Humans
;
Nanocomposites
;
chemistry
;
Nanoparticles
;
Tooth Remineralization
;
methods
8.Osteocyte morphology and orientation in relation to strain in the jaw bone.
Vivian WU ; René F M VAN OERS ; Engelbert A J M SCHULTEN ; Marco N HELDER ; Rommel G BACABAC ; Jenneke KLEIN-NULEND
International Journal of Oral Science 2018;10(1):2-2
Bone mass is important for dental implant success and is regulated by mechanoresponsive osteocytes. We aimed to investigate the relationship between the levels and orientation of tensile strain and morphology and orientation of osteocytes at different dental implant positions in the maxillary bone. Bone biopsies were retrieved from eight patients who underwent maxillary sinus-floor elevation with β-tricalcium phosphate prior to implant placement. Gap versus free-ending locations were compared using 1) a three-dimensional finite-element model of the maxilla to predict the tensile strain magnitude and direction and 2) histology and histomorphometric analyses. The finite-element model predicted larger, differently directed tensile strains in the gap versus free-ending locations. The mean percentage of mineralised residual native-tissue volume, osteocyte number (mean ± standard deviations: 97 ± 40/region-of-interest), and osteocyte shape (~90% elongated, ~10% round) were similar for both locations. However, the osteocyte surface area was 1.5-times larger in the gap than in the free-ending locations, and the elongated osteocytes in these locations were more cranially caudally oriented. In conclusion, significant differences in the osteocyte surface area and orientation seem to exist locally in the maxillary bone, which may be related to the tensile strain magnitude and orientation. This might reflect local differences in the osteocyte mechanosensitivity and bone quality, suggesting differences in dental implant success based on the location in the maxilla.
Biopsy
;
Bone-Implant Interface
;
Calcium Phosphates
;
pharmacology
;
Dental Implants
;
Finite Element Analysis
;
Humans
;
Maxilla
;
surgery
;
Osteocytes
;
physiology
;
Radiography, Panoramic
;
Sinus Floor Augmentation
;
Tensile Strength
9.Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers.
Yang HUANG ; Jinsong KONG ; Xiaokang GONG ; Xin ZHENG ; Haibao WANG ; Jianwei RUAN
Journal of Zhejiang University. Medical sciences 2017;46(6):593-599
Objective: To analysis the biomechanical and biocompatible properties of calcium phosphate cement (CPC) enhanced by chitosan short nanofibers(CSNF) and Arg-Gly-Asp (RGD). Methods: Chitosan nanofibers were prepared by electrospinning, and cut into short fibers by high speed dispersion. CPC with calcium phosphorus ratio of 1.5:1 was prepared by Biocement D method. The composition and structure of CPC, CSNF, RGD modified CSNF (CSNF-RGD), CSNF enhanced CPC (CPC-CSNF), RGD modified CPC-CSNF (CPC-CSNF-RGD) were observed by infrared spectrum, X-ray diffraction (XRD) and scan electron microscopy (SEM). The mechanical properties were measured by universal mechanical testing instrument. The adhesion and proliferation of MC3T3 cells were assessed using immunofluorescence staining and MTT method. Results: The distribution of CSNF in the scaffold was homogeneous, and the porous structure between the nanofibers was observed by SEM. The infrared spectrum showed the characteristic peaks at 1633 nm and 1585 nm, indicating that RGD was successfully grafted on chitosan nanofibers. The XRD pattern showed that the bone cement had a certain curability. The stain-stress test showed that break strengths were (17.74±0.54) MPa for CPC-CSNF and (16.67±0.56) MPa for CPCP-CSNF-RGD, both were higher than that of CPC(all P<0.05). The immunofluorescence staining and MTT results indicated that MC3T3 cells grew better on CPC-CSNF-RGD after 240 min of culture(all P<0.05). Conclusion: CSNF-RGD can improve the biomechanical property and biocompatibility of CPC, indicating its potential application in bone tissue repair.
3T3 Cells
;
Animals
;
Biocompatible Materials
;
Bone Cements
;
chemistry
;
metabolism
;
pharmacology
;
Calcium Phosphates
;
metabolism
;
Cell Proliferation
;
drug effects
;
Chitosan
;
chemistry
;
pharmacology
;
Mice
;
Nanofibers
;
chemistry
;
Oligopeptides
;
chemistry
10.Effect of 2-methacryloyloxyethyl phosphorylcholine on the protein-repellent property of dental adhesive.
Ning ZHANG ; Ke ZHANG ; Huakun XU ; Yuxing BAI
Chinese Journal of Stomatology 2016;51(3):172-175
OBJECTIVETo evaluate the effect of 2-methacryloyloxyethyl phosphorylcholine (MPC) and nanoparticles of amorphous calcium phosphate (NACP) on the protein-repellent property of dental adhesive.
METHODSMPC and NACP were incorporated into SBMP as the test group. Scotchbond Multi-Purpose (SBMP) was used as control group. Human dentin shear bond strengths were measured. Protein adsorption onto samples was determined by micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm viability.
RESULTSThe dentin bond strength of modified group was (28.7±2.2) MPa, which was not significantly different from that of the SBMP control group. The amount of protein adsorption in the modified group and the SBMP control group were (0.21±0.02) µg/cm(2) and (4.17±0.45) µg/cm(2) respectively. Lactic acid production of biofilms in modified group and SBMP control were (7.71 ± 1.01) mmol/L and (19.18 ± 2.34) mmol/L repectively.
CONCLUSIONSMPC-NACP based dental adhesive greatly reduce the protein adsorption and bacterial adhesion, without compromising dentin shear bond strength. This novel bonding agent may have wide application.
Adsorption ; Biofilms ; drug effects ; growth & development ; Calcium Phosphates ; pharmacology ; Dental Cements ; pharmacology ; Dental Plaque ; Dentin ; chemistry ; Humans ; Lactic Acid ; biosynthesis ; Methacrylates ; pharmacology ; Nanoparticles ; Phosphorylcholine ; analogs & derivatives ; pharmacology ; Resin Cements ; pharmacology ; Saliva ; Tensile Strength

Result Analysis
Print
Save
E-mail