1.Optimization of fermentation conditions in shake flask of JA20-1, a VOCs-producing biocontrol bacterium and evaluation of its biocontrol effect against Botrytis cinerea of ginseng.
Yu-Ze ZHANG ; Yan-Cong HU ; Xiu-Xiu WANG ; Cong ZHANG ; Zhong-Hua QU ; Bao-Hui LU ; Xue WANG ; Jie GAO
China Journal of Chinese Materia Medica 2025;50(7):1748-1757
Bacillus mycoides JA20-1 was screened and identified as a biocontrol bacterium with a high capacity for producing volatile organic compounds(VOCs) in the laboratory. This strain had significant inhibitory effects on various postharvest disease pathogens in crops, such as Botrytis cinerea, as well as soil-borne disease pathogens in ginseng, such as Sclerotinia ginseng. In order to accelerate its industrialization process, in this study, single-factor experiments and response surface optimization methods were used. The fermentation medium and fermentation conditions in the shake flask of strain JA20-1 were systematically optimized by using cell production volume as the response variable. Meanwhile, the biocontrol effect of JA20-1 on B. cinerea of ginseng during the storage period was evaluated by using the method of fumigation in a dry dish in vitro. The results indicated that the optimal fermentation medium formulation for strain JA20-1 was as follows: 1% yeast paste, 1% soluble starch, 0.25% K_2HPO_4·3H_2O, and 0.2% NaCl. The optimal fermentation conditions in the shake flask were vaccination size of 3%, culture volume of 50 mL in a 250 mL Erlenmeyer flask, pH of 6.2, fermentation temperature of 34 ℃, shaking speed of 180 r·min~(-1), and incubation time of 18 hours. The bacteria count in the fermentation broth under these conditions reached 2.17 × 10~8 CFU·mL~(-1), which was 6.58 times higher than before. The average control efficacy of the fermentation broth on Botrytis cinerea of ginseng under in vitro fumigation reached 61.70% and 84.04% respectively, when 20 mL and 30 mL per dish were used. The research provided theoretical support and technical foundation for the development and utilization of Bacillus mycoides JA20-1 and the biocontrol of soil-borne diseases in ginseng and postharvest diseases in crops.
Botrytis/drug effects*
;
Fermentation
;
Panax/microbiology*
;
Plant Diseases/prevention & control*
;
Volatile Organic Compounds/metabolism*
;
Bacillus/physiology*
;
Pest Control, Biological/methods*
;
Biological Control Agents/metabolism*
;
Culture Media/chemistry*
2.Screening and identification of a biocontrol strain CXG2-5 against kiwifruit bacterial canker and preparation of microcapsules.
Jing HUANG ; Ruolan YANG ; Xinying LIU ; Zihan ZHANG ; Nana WANG ; Lili HUANG
Chinese Journal of Biotechnology 2025;41(10):3734-3746
To develop biocontrol agents for the control of kiwifruit bacterial canker, we isolated a strain CXG2-5 with inhibitory activity against Pseudomonas syringae pv. actinidiae (Psa), the pathogen of kiwifruit bacterial canker, from the rhizosphere soil of kiwifruit by the plate confrontation test. The strain was identified by morphological observation, physiological and biochemical tests, and molecular biological methods. The indoor control efficacy of the strain was determined by the inoculation of the strain into detached branches with wounds and into leaf discs by vacuum infiltration. The ability of the strain to expand and colonize leaf veins was determined by fluorescent labeling and scanning electron microscopy. Subsequently, the strain was prepared into microcapsules, the field control efficacy of which was evaluated. The strain CXG2-5 was identified as Pseudomonas benzenivorans. It demonstrated good antagonistic activity against Psa, with an inhibition zone diameter of 22 mm and an inhibition rate of 72.7%. The preventive effects of the strain on kiwifruit bacterial canker were better than the therapeutic effects on both detached branches and leaves, with the preventive effects reaching 65% and 92.4%, respectively. The control effect of microcapsules of this strain in the field reached 60.89%, which was slightly lower than that of 20% kasugamycin and higher than that of Bacillus subtilis wettable powder. In conclusion, strain CXG2-5 serves as a candidate for the control of kiwifruit bacterial canker, and the prepared microcapsules have good value for development and application.
Actinidia/microbiology*
;
Plant Diseases/prevention & control*
;
Pseudomonas syringae
;
Pseudomonas/isolation & purification*
;
Capsules
;
Antibiosis
;
Biological Control Agents
;
Pest Control, Biological/methods*
3.Screening of soil biocontrol bacteria and evaluation of their control effects on Fusarium head blight of wheat.
Dongfang WANG ; Xinxin ZHAI ; Chunlin YANG ; Huilan ZHANG ; Jie WU ; Zerong SONG ; Pan ZHAO ; Yu CHI
Chinese Journal of Biotechnology 2025;41(10):3764-3773
Fusarium head blight (FHB), caused by Fusarium graminearum, not only leads to severe yield losses but also poses a threat to food safety due to the mycotoxins produced by the pathogen. Since this disease is preventable but not curable, the current control mainly relies on chemical fungicides, the long-term use of which may lead to pathogen resistance and environmental pollution. To develop green control methods, we screened 13 biocontrol strains from the rhizosphere soil of wheat, among which strain No. 12 (identified as Pythium aphanidermatum) showed significant antifungal effects. In the plate confrontation test, this strain reduced the colony diameter of the pathogen by 69.2% (1.47 mm vs. 4.78 mm in the control group), with an inhibition rate of 77% (P < 0.01). Microscopic observation revealed obvious deformations in the pathogen hyphae, suggesting a lysing effect. The coleoptile experiment further confirmed that the pre-treatment with this strain reduced the incidence rate to 0. These findings provide new candidate strains for the biocontrol of FHB and offer a scientific basis for reducing the use of chemical fungicides and promoting sustainable agricultural development.
Triticum/growth & development*
;
Fusarium/growth & development*
;
Plant Diseases/prevention & control*
;
Soil Microbiology
;
Pest Control, Biological/methods*
;
Pythium/physiology*
;
Biological Control Agents
;
Rhizosphere
;
Fungicides, Industrial
4.Targeted innovative design of Bt Cry toxin insecticidal mimics.
Chongxin XU ; Yuan LIU ; Xiao ZHANG ; Xianjin LIU
Chinese Journal of Biotechnology 2023;39(2):446-458
Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.
Insecticides/metabolism*
;
Bacillus thuringiensis
;
Endotoxins/pharmacology*
;
Bacillus thuringiensis Toxins/metabolism*
;
Hemolysin Proteins/pharmacology*
;
Bacterial Proteins/chemistry*
;
Plants, Genetically Modified/genetics*
;
Pest Control, Biological
5.Advances in receptor-mediated resistance mechanisms of Lepidopteran insects to Bacillus thuringiensis toxin.
Leilei LIU ; Peiwen XU ; Kaiyu LIU ; Wei WEI ; Zhongshen CHANG ; Dahui CHENG
Chinese Journal of Biotechnology 2022;38(5):1809-1823
Bacillus thuringiensis is widely used as an insecticide which is safe and environmentally friendly to humans and animals. One of the important insecticidal mechanisms is the binding of Bt toxins to specific toxin receptors in insect midgut and forming a toxin perforation which eventually leads to insect death. The resistance of target pests to Bt toxins is an important factor hampering the long-term effective cultivation of Bt crops and the continuous use of Bt toxins. This review summarizes the mechanism of insect resistance to Bt toxins from the perspective of important Bt toxin receptors in midgut cells of Lepidopteran insects, which may facilitate the in-depth study of Bt resistance mechanism and pest control.
Animals
;
Bacillus thuringiensis/genetics*
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
Endotoxins/metabolism*
;
Hemolysin Proteins/metabolism*
;
Insecta/metabolism*
;
Insecticide Resistance/genetics*
;
Insecticides/pharmacology*
;
Pest Control, Biological
6.Preparation and purification of Cry1Ah protein candidate reference material.
Lin GUO ; Lili GENG ; Xiaoxiao SUN ; Meiling WANG ; Changlong SHU ; Jie ZHANG
Chinese Journal of Biotechnology 2019;35(8):1511-1519
With the rapid development of transgenic technology, the safety of genetically modified products has received extensive attention. Certified reference materials for the detection of genetically modified organisms play important roles in ensuring comparability and traceability of the qualitative and quantitative detection of genetically modified products. However, the development of protein reference materials is relatively slow, and one of the difficulties is the preparation of protein candidates with high purity. The cry1Ah1 gene of Bacillus thuringiensis has been used for the development of transgenic insect-resistant crops because of its excellent insecticidal activity against lepidopteran pests such as Asian corn borer, and has obtained transgenic lines with good insect resistance traits. In order to develop Cry1Ah protein certified reference material, it is urgent to establish a preparation and purification system. In this study, a system for preparing Cry1Ah protein by Bt expression system was optimized, and a high-purity Cry1Ah protein (size exclusion chromatography purity: 99.6%) was obtained by ion-exchange chromatography and size exclusion chromatography stepwise purification. The results of biological activity assay showed that there was no significant difference in the insecticidal activity of purified Cry1Ah protein and protoxin against diamondback moths (Plutella xylostella). Finally, the amino acid sequence of the activated Cry1Ah protein was determined using Edman degradation and mass spectrometry. In summary, the obtained Cry1Ah pure protein can be used for the development of protein reference materials.
Animals
;
Bacillus thuringiensis
;
Bacterial Proteins
;
Cryptochromes
;
metabolism
;
Endotoxins
;
Hemolysin Proteins
;
Moths
;
Pest Control, Biological
;
Plants, Genetically Modified
7.Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola.
Mi NI ; Qiong WU ; Hong-Li WANG ; Wei-Cheng LIU ; Bin HU ; Dian-Peng ZHANG ; Juan ZHAO ; De-Wen LIU ; Cai-Ge LU
Journal of Zhejiang University. Science. B 2019;20(1):84-94
Peach brown rot, caused by Monilinia fructicola, is one of the most serious peach diseases. A strain belonging to the Actinomycetales, named Streptomyces blastmyceticus JZB130180, was found to have a strong inhibitory effect on M. fructicola in confrontation culture. Following the inoculation of peaches in vitro, it was revealed that the fermentation broth of S. blastmyceticus JZB130180 had a significant inhibitory effect on disease development by M. fructicola. The fermentation broth of S. blastmyceticus JZB130180 had an EC50 (concentration for 50% of maximal effect) of 38.3 µg/mL against M. fructicola, as determined in an indoor toxicity test. Analysis of the physicochemical properties of the fermentation broth revealed that it was tolerant of acid and alkaline conditions, temperature, and ultraviolet radiation. In addition, chitinase, cellulase, and protease were also found to be secreted by the strain. The results of this study suggest that S. blastmyceticus JZB130180 may be used for the biocontrol of peach brown rot.
Ascomycota/pathogenicity*
;
Bacterial Proteins/metabolism*
;
Cell Wall/metabolism*
;
Cellulase/metabolism*
;
Chitinases/metabolism*
;
Fermentation
;
Fruit/microbiology*
;
Pest Control, Biological/methods*
;
Phylogeny
;
Plant Diseases/prevention & control*
;
Prunus persica/microbiology*
;
Siderophores/metabolism*
;
Streptomyces/physiology*
8.Research progress in root rot diseases of Chinese herbal medicine and control strategy by antagonistic microorganisms.
Fen GAO ; Xiao-xia REN ; Meng-liang WANG ; Xue-mei QIN
China Journal of Chinese Materia Medica 2015;40(21):4122-4126
In recent years, root rot diseases of Chinese herbal medicine have been posing grave threat to the development of the traditional Chinese medicine industry. This article presents a review on the occurring situation of the root rot disease, including the occurrence of the disease, the diversity of the pathogens, the regional difference in dominant pathogens,and the complexity of symptoms and a survey of the progress in bio-control of the disease using antagonistic microorganisms. The paper also discusses the existing problems and future prospects in the research.
Animals
;
Antibiosis
;
Bacteria
;
growth & development
;
Fungi
;
physiology
;
Nematoda
;
growth & development
;
Pest Control, Biological
;
methods
;
Plant Diseases
;
microbiology
;
parasitology
;
prevention & control
;
Plant Roots
;
microbiology
;
parasitology
;
Plants, Medicinal
;
microbiology
;
parasitology
9.Experimental evaluation of Candonocypris novaezelandiae (Crustacea: Ostracoda) in the biocontrol of Schistosomiasis mansoni transmission.
Fouad YOUSIF ; Sherif HAFEZ ; Samia El BARDICY ; Menerva TADROS ; Hoda Abu TALEB ; Lim Boon HUAT
Asian Pacific Journal of Tropical Biomedicine 2013;3(4):267-272
OBJECTIVETo test Candonocypris novaezelandiae (Baird) (C. novaezelandiae), sub-class Ostracoda, obtained from the Nile, Egypt for its predatory activity on snail, Biomphalaria alexandrina (B. alexandrina), intermediate host of Schistosoma mansoni (S. mansoni) and on the free-living larval stages of this parasite (miracidia and cercariae).
METHODSThe predatory activity of C. novaezelandiae was determined on B. alexandrina snail (several densities of eggs, newly hatched and juveniles). This activity was also determined on S. mansoni miracidia and cercariae using different volumes of water and different numbers of larvae. C. novaezelandiae was also tested for its effect on infection of snails and on the cercarial production.
RESULTSC. novaezelandiae was found to feed on the eggs, newly hatched and juvenile snails, but with significant reduction in the consumption in the presence of other diet like the blue green algae (Nostoc muscorum). This ostracod also showed considerable predatory activity on the free-living larval stages of S. mansoni which was affected by certain environmental factors such as volume of water, density of C. novaezelandiae and number of larvae of the parasite.
CONCLUSIONSThe presence of this ostracod in the aquatic habitat led to significant reduction of snail population, infection rate of snails with schistosme miracidia as well as of cercarial production from the infected snails. This may suggest that introducing C. novaezelandiae into the habitat at schistosome risky sites could suppress the transmission of the disease.
Animals ; Crustacea ; physiology ; Pest Control ; Pest Control, Biological ; Predatory Behavior ; Schistosoma mansoni ; Schistosomiasis mansoni ; prevention & control ; transmission
10.Screening for virulence strains of Metarhizium against Dorysthenes hydropicus pascoes.
Wei-Si MA ; Hai-Li QIAO ; Xiang-Qun NONG ; Jun CHEN ; Jin YU ; Rong-Min QIN ; Chang-Qing XU ; Jiang XU ; Sai LIU ; Xiang-Ming LI ; Hui-Zhen CHENG
China Journal of Chinese Materia Medica 2013;38(20):3438-3441
OBJECTIVEThe aim of the present study was to screen the Metarhizium strains with high virulence against the larvae of Dorysthenes hydropicus, a serious pest of Citrus grandis.
METHODThirty six strains of Metarhiziums were isolated from the soil of C. grandis GAP base and collected from other institutions, and the pathogenicity of these strains against 1st instar larvae of D. hydropicus was detected at concentration of 1 x 10(8) conidia/g. The high violence strains against D. hydropicus were cultivated in sabouraud dextrose yeast medium at first, then transfer to rice grain. And the sporulations of these violent strains against D. hydropicus were detected.
RESULTTwenty-eight strains showed virulence against D. hydropicus by preliminary study, and 7 strains of them were collected for further study, 6 of the 7 showed high virulence, the highest cadaver rate was higher than 74%. The conidia production of strain 1 and strain 4 were 2.35 +/- 0. 25 (1 x 10(9) conidia/g), 2.21 +/- 0.27 (1 x 10(9) conidia/g), respectively, showed significantly higher than other strains.
CONCLUSIONStrain 1 and strain 4 of the 36 Metarhiziums strains showed high virulence against D. hydropicus, and the highest sporulation ability, so they have a best application prospect.
Animals ; Citrus ; parasitology ; Coleoptera ; microbiology ; Metarhizium ; growth & development ; isolation & purification ; pathogenicity ; Pest Control, Biological ; Plant Diseases ; parasitology ; prevention & control ; Soil Microbiology ; Spores, Fungal ; growth & development ; isolation & purification ; pathogenicity ; Virulence

Result Analysis
Print
Save
E-mail