1.The regulatory effect and mechanism of PGC-1α on mitochondrial function.
Song-Hua NAN ; Chao-Jie PENG ; Ying-Lin CUI
Acta Physiologica Sinica 2025;77(2):300-308
Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) is a core member of the PGC-1 family and serves as a transcriptional coactivator, playing a crucial regulatory role in various diseases. Mitochondria, the main site of cellular energy metabolism, are essential for maintaining cell growth and function. Their function is regulated by various transcription factors and coactivators. PGC-1α regulates the biogenesis, dynamics, energy metabolism, calcium homeostasis, and autophagy processes of mitochondria by interacting with multiple nuclear transcription factors, thereby exerting significant effects on mitochondrial function. This review explores the biological functions of PGC-1α and its regulatory effects and related mechanisms on mitochondria, providing important information for our in-depth understanding of the role of PGC-1α in cellular metabolism. The potential role of PGC-1α in metabolic diseases, cardiovascular diseases, and neurodegenerative diseases was also discussed, providing a theoretical basis for the development of new treatment strategies.
Humans
;
Mitochondria/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology*
;
Animals
;
Energy Metabolism/physiology*
;
Neurodegenerative Diseases/physiopathology*
;
Autophagy/physiology*
;
Transcription Factors/physiology*
;
Metabolic Diseases/physiopathology*
;
Cardiovascular Diseases/physiopathology*
2.Jianpi Qinghua Formula improves metabolic-associated fatty liver disease by modulating PGC1α/PPARα/CPT1A pathway.
Yan-Yan XIAO ; Xu HAN ; Qing-Guang CHEN ; Jun-Fei XU ; Chi CHEN ; Fan GONG ; Hao LU
China Journal of Chinese Materia Medica 2025;50(9):2505-2514
Based on the regulation of mitochondrial fatty acid β-oxidation through the PGC1α/PPARα/CPT1A pathway, this study investigated the effect of Jianpi Qinghua Formula on the mitochondrial fatty acid β-oxidation pathway in the livers of mice with metabolic-associated fatty liver disease(MAFLD) induced by a high-fat diet. MAFLD mice were fed a high-fat diet to establish the model, and after successful modeling, the mice were divided into the model group, the Jianpi Qinghua Formula group, and the metformin group, with an additional control group. Each group was treated with the corresponding drug or an equivalent volume of saline via gavage. Body mass and food intake were measured regularly during the experiment. At the end of the experiment, blood lipid levels and liver function-related indices were measured, liver pathological changes were observed, and protein expression levels of PGC1α, PPARα, PPARγ, and CPT1A were detected by Western blot. The results showed that, with no difference in food intake, compared to the model group, the body mass of the Jianpi Qinghua Formula group and the metformin group was reduced, liver weight and liver index decreased, and levels of cholesterol, triglycerides, and low-density lipoprotein cholesterol(LDL-C) were lowered. Additionally, a decrease in alanine aminotransferase(ALT) and aspartate aminotransferase(AST) was observed. Hematoxylin and eosin(HE) staining revealed reduced pathological damage to hepatocytes, while oil red O staining showed improvement in fatty infiltration. The liver disease activity score decreased, and transmission electron microscopy revealed improvement in mitochondrial swelling and restoration of internal cristae. Western blot analysis indicated that Jianpi Qinghua Formula significantly increased the expression of PGC1α, PPARα, and CPT1A proteins in the liver and reduced the expression of PPARγ. These results suggest that the Jianpi Qinghua Formula improves mitochondrial function, promotes fatty acid oxidation, and alleviates the pathological changes of MAFLD. In conclusion, Jianpi Qinghua Formula can improve MAFLD by mediating mitochondrial fatty acid β-oxidation through the PGC1α/PPARα/CPT1A pathway.
Animals
;
PPAR alpha/genetics*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Carnitine O-Palmitoyltransferase/genetics*
;
Male
;
Liver/metabolism*
;
Fatty Liver/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Diet, High-Fat/adverse effects*
3.Pachymic acid promotes brown/beige adipocyte differentiation and lipid metabolism in preadipocytes.
Kunling CHEN ; Xiaobing DOU ; Yiyou LIN ; Danyao BAI ; Yangzhou LUO ; Liping ZHOU
Journal of Zhejiang University. Medical sciences 2025;54(3):333-341
OBJECTIVES:
To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes.
METHODS:
3T3-L1 MBX cells were induced to differentiate into beige adipocytes using a brown cocktail method. The impact of pachymic acid on the viability of 3T3-L1 MBX cells was evaluated using the CCK-8 assay. The formation of lipid droplets following treatment with pachymic acid was observed by oil red O staining. The mRNA expression levels of key browning genes, including uncoupling protein (Ucp) 1, the peroxisome proliferator activated receptor-γ coactivator (Pgc)-1α, and the PR domain-containing protein 16 (Prdm16), as well as the mRNA expression of sterol regulatory element-binding protein (Srebp) 1c, acetyl-coA carboxylase (Acc), fatty acid synthase (Fas), and hormone-sensitive triglyceride lipase (Hsl), adipose triglyceride lipase (Atgl), and carnitine palmitoyltransferase (Cpt) 1 were detected by quantitative reverse transcription polymerase chain reaction. The protein expression of Ucp1, Pgc-1a, and Prdm16 was detected by Western blotting.
RESULTS:
The 3T3-L1 MBX cells were induced in vitro to form beige adipocytes with high expression of key browning genes(Ucp1, Pgc-1α, and Prdm16), and beige adipose-marker genes (Cd137, Tbx1, and Tmem26). Concentrations range of 0-80 μmol/L pachymic acid were non-cytotoxic to 3T3-L1 MBX cells. Pachymic acid treatment significantly inhibited the differentiation of 3T3-L1 MBX cells, resulting in a notable decrease in lipid accumulation. There was a marked increase in the expression of key browning genes and their proteins products, such as Ucp1, Pgc-1α, and Prdm16, while the expressions of fat synthesis-related genes Srebp1c, Acc and Fas were significantly decreased (all P<0.05). The expressions of lipolysis-related genes (Hsl, Atgl, and Cpt1) were significantly increased (all P<0.05). Treatment with 20 μmol/L pachymic acid showed the most pronounced effect.
CONCLUSIONS
Pachymic acid can inhibit fat synthesis and promote lipid decomposition by regulating the brown formation and lipid differentiation of preadipocytes.
Animals
;
Lipid Metabolism/drug effects*
;
Mice
;
Cell Differentiation/drug effects*
;
Adipocytes, Beige/drug effects*
;
3T3-L1 Cells
;
Adipocytes, Brown/drug effects*
;
Triterpenes/pharmacology*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
Uncoupling Protein 1
;
Sterol Regulatory Element Binding Protein 1/metabolism*
4.NLRP6 overexpression improves nonalcoholic fatty liver disease by promoting lipid oxidation and decomposition in hepatocytes through the AMPK/CPT1A/PGC1A pathway.
Qing SHI ; Suye RAN ; Lingyu SONG ; Hong YANG ; Wenjuan WANG ; Hanlin LIU ; Qi LIU
Journal of Southern Medical University 2025;45(1):118-125
OBJECTIVES:
To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD).
METHODS:
Mouse models with high-fat diet (HFD) feeding for 16 weeks (n=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (n=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting.
RESULTS:
HFD and MCD feeding both resulted in the development of NAFLD in mice, which showed significantly decreased NLRP6 expression in the liver. In PA-treated LO2 cells, NLRP6 overexpression significantly decreased cellular TG content and lipid deposition, while NLRP6 knockdown caused the opposite effects. NLRP6 overexpression in PA-treated LO2 cells also increased mRNA and protein expressions of PGC1A and CPT1A, levels of ATP and β-hydroxybutyrate, and the phosphorylation level of AMPK pathway; the oxidative decomposition of lipids induced by Ad-NLRP6 was inhibited by the use of AMPK inhibitors.
CONCLUSIONS
NLRP6 overexpression promotes lipid oxidation and decomposition through AMPK/CPT1A/PGC1A to alleviate lipid deposition in hepatocytes.
Non-alcoholic Fatty Liver Disease/metabolism*
;
Animals
;
Hepatocytes/metabolism*
;
Lipid Metabolism
;
Mice
;
Humans
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
AMP-Activated Protein Kinases/metabolism*
;
Carnitine O-Palmitoyltransferase/metabolism*
;
Diet, High-Fat
;
Male
;
Mice, Inbred C57BL
;
Signal Transduction
5.Shenqi Buzhong Formula ameliorates mitochondrial dysfunction in a rat model of chronic obstructive pulmonary disease by activating the AMPK/SIRT1/PGC-1α pathway.
Lu ZHANG ; Huanzhang DING ; Haoran XU ; Ke CHEN ; Bowen XU ; Qinjun YANG ; Di WU ; Jiabing TONG ; Zegeng LI
Journal of Southern Medical University 2025;45(5):969-976
OBJECTIVES:
To explore the mechanism of Shenqi Buzhong (SQBZ) Formula for alleviating mitochondrial dysfunction in a rat model of chronic obstructive pulmonary disease (COPD) in light of the AMPK/SIRT1/PGC-1α pathway.
METHODS:
Fifty male SD rat models of COPD, established by intratracheal lipopolysaccharide (LPS) instillation, exposure to cigarette smoke, and gavage of Senna leaf infusion, were randomized into 5 groups (n=10) for treatment with saline (model group), SQBZ Formula at low, moderate and high doses (3.08, 6.16 and 12.32 g/kg, respectively), or aminophylline (0.024 g/kg) by gavage for 4 weeks, with another 10 untreated rats as the control group. Pulmonary function of the rats were tested, and pathologies and ultrastructural changes of the lung tissues were examined using HE staining and transmission electron microscopy. The levels of SOD, ATP, MDA, and mitochondrial membrane potential in the lungs were detected using WST-1, colorimetric assay, TBA, and JC-1 methods. Flow cytometry was used to analyze ROS level in the lung tissues, and the protein expression levels of P-AMPKα, AMPKα, SIRTI, and PGC-1α were detected using Western blotting.
RESULTS:
The rat models of COPD showed significantly decreased lung function, severe histopathological injuries of the lungs, decreased pulmonary levels of SOD activity, ATP and mitochondrial membrane potential, increased levels of MDA and ROS, and decreased pulmonary expressions of P-AMPKα, SIRTI, and PGC-1α proteins. All these changes were significantly alleviated by treatment with SQBZ Formula and aminophylline, and the efficacy was comparable between high-dose SQBZ Formula group and aminophylline group.
CONCLUSIONS
SQBZ Formula ameliorates mitochondrial dysfunction in COPD rats possibly by activating the AMPK/SIRT1/PGC-1α pathway.
Animals
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Sirtuin 1/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
AMP-Activated Protein Kinases/metabolism*
;
Mitochondria/metabolism*
;
Disease Models, Animal
;
Signal Transduction/drug effects*
6.Curcumin inhibits lipid metabolism in non-small cell lung cancer by downregulating the HIF-1α pathway.
Dandan LI ; Jiaxin CHU ; Yan YAN ; Wenjun XU ; Xingchun ZHU ; Yun SUN ; Haofeng DING ; Li REN ; Bo ZHU
Journal of Southern Medical University 2025;45(5):1039-1046
OBJECTIVES:
To investigate the effect of curcumin on lipid metabolism in non-small cell lung cancer (NSCLC) and its molecular mechanism.
METHODS:
The inhibitory effect of curcumin (0-70 μmol/L) on proliferation of A549 and H1299 cells was assessed using MTT assay, and 20 and 40 μmol/L curcumin was used in the subsequent experiments. The effect of curcumin on lipid metabolism was evaluated using cellular uptake assay, wound healing assay, triglyceride (TG)/free fatty acid (NEFA) measurements, and Oil Red O staining. Western blotting was performed to detect the expressions of PGC-1α, PPAR-α, and HIF-1α in curcumin-treated cells. Network pharmacology was used to predict the metabolic pathways, and the results were validated by Western blotting. In a nude mouse model bearing A549 cell xenograft, the effects of curcumin (20 mg/kg) on tumor growth and lipid metabolism were assessed by measuring tumor weight and observing the changes in intracellular lipid droplets.
RESULTS:
Curcumin concentration-dependently inhibited the proliferation of A549 and H1299 cells and significantly reduced TG and NEFA levels and intracellular lipid droplets. Western blotting revealed that curcumin significantly upregulated PGC-1α and PPAR‑α expressions in the cells. KEGG pathway enrichment analysis predicted significant involvement of the HIF-1 signaling pathway in curcumin-treated NSCLC, suggesting a potential interaction between HIF-1α and PPAR‑α. Western blotting confirmed that curcumin downregulated the expression of HIF-1α. In the tumor-bearing mice, curcumin treatment caused significant reduction of the tumor weight and the number of lipid droplets in the tumor cells.
CONCLUSIONS
Curcumin inhibits NSCLC cell proliferation and lipid metabolism by downregulating the HIF-1α pathway.
Curcumin/pharmacology*
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Animals
;
Lipid Metabolism/drug effects*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Mice, Nude
;
Down-Regulation
;
Mice
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
PPAR alpha/metabolism*
;
Signal Transduction/drug effects*
;
A549 Cells
8.Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism.
Yunkun LIU ; Nengwen HUANG ; Xianghe QIAO ; Zhiyu GU ; Yongzhi WU ; Jinjin LI ; Chengzhou WU ; Bo LI ; Longjiang LI
International Journal of Oral Science 2023;15(1):37-37
Oral potentially malignant disorders (OPMDs) are precursors of oral squamous cell carcinoma (OSCC). Deregulated cellular energy metabolism is a critical hallmark of cancer cells. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) plays vital role in mitochondrial energy metabolism. However, the molecular mechanism of PGC1α on OPMDs progression is less unclear. Therefore, we investigated the effects of knockdown PGC1α on human dysplastic oral keratinocytes (DOKs) comprehensively, including cell proliferation, cell cycle, apoptosis, xenograft tumor, mitochondrial DNA (mtDNA), mitochondrial electron transport chain complexes (ETC), reactive oxygen species (ROS), oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and glucose uptake. We found that knockdown PGC1α significantly inhibited the proliferation of DOKs in vitro and tumor growth in vivo, induced S-phase arrest, and suppressed PI3K/Akt signaling pathway without affecting cell apoptosis. Mechanistically, downregulated of PGC1α decreased mtDNA, ETC, and OCR, while enhancing ROS, glucose uptake, ECAR, and glycolysis by regulating lactate dehydrogenase A (LDHA). Moreover, SR18292 (an inhibitor of PGC1α) induced oxidative phosphorylation dysfunction of DOKs and declined DOK xenograft tumor progression. Thus, our work suggests that PGC1α plays a crucial role in cell proliferation by reprograming energy metabolism and interfering with energy metabolism, acting as a potential therapeutic target for OPMDs.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Cell Proliferation
;
DNA, Mitochondrial
;
Energy Metabolism
;
Glucose
;
Mouth Neoplasms/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*
;
Phosphatidylinositol 3-Kinases
;
Reactive Oxygen Species
9.Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway.
Long CHENG ; Lu SHI ; Changhao HE ; Chen WANG ; Yinglan LV ; Huimin LI ; Yongcheng AN ; Yuhui DUAN ; Hongyu DAI ; Huilin ZHANG ; Yan HUANG ; Wanxin FU ; Weiguang SUN ; Baosheng ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):812-829
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Mice
;
Animals
;
Adipose Tissue, Brown
;
Sirtuin 1/pharmacology*
;
Diabetes Mellitus, Type 2/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Morus/metabolism*
;
Flavonoids/metabolism*
;
Prospective Studies
;
Signal Transduction
;
Adipose Tissue, White
;
Plant Leaves
;
Uncoupling Protein 1/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*
10.PGC1α plays a pivotal role in renal fibrosis via regulation of fatty acid metabolism in renal tissue.
Rui ZHANG ; Jia ZENG ; Zhijun DENG ; Guangming YIN ; Long WANG ; Jing TAN
Journal of Central South University(Medical Sciences) 2022;47(6):786-793
Renal fibrosis is a common and irreversible pathological feature of end-stage renal disease caused by multiple etiologies. The role of inflammation in renal fibrosis tissue has been generally accepted. The latest view is that fatty acid metabolism disorder contributes to renal fibrosis. peroxisome proliferator activated receptor-gamma coactivator 1α (PGC1α) plays a key role in fatty acid metabolism, regulating fatty acid uptake and oxidized protein synthesis, preventing the accumulation of lipid in the cytoplasm, and maintaining a dynamic balanced state of intracellular lipid. In multiple animal models of renal fibrosis caused by acute or chronic kidney disease, or even age-related kidney disease, almost all of the kidney specimens show the down-regulation of PGC1α. Upregulation of PGC1α can reduce the degree of renal fibrosis in animal models, and PGC1α knockout animals exhibit severe renal fibrosis. Studies have demonstrated that AMP-activated protein kinase (AMPK), MAPK, Notch, tumor necrosis factor-like weak inducer of apoptosis (TWEAK), epidermal growth factor receptor (EGFR), non-coding RNA (ncRNAs), liver kinase B1 (LKB1), hairy and enhancer of split 1 (Hes1), and other pathways regulate the expression of PGC1α and affect fatty acid metabolism. But some of these pathways interact with each other, and the effect of the integrated pathway on renal fibrosis is not clear.
Animals
;
Fatty Acids
;
Fibrosis
;
Lipid Metabolism
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*
;
Renal Insufficiency, Chronic

Result Analysis
Print
Save
E-mail