1.Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells.
Fei-Fei XU ; Zi-Bin ZHANG ; Yang-Yang WANG ; Ting-Hua WANG
Neuroscience Bulletin 2018;34(6):1077-1090
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Animals
;
Brain
;
metabolism
;
pathology
;
Brain Ischemia
;
complications
;
pathology
;
Bronchoalveolar Lavage Fluid
;
Cell Hypoxia
;
physiology
;
Cells, Cultured
;
Cerebrovascular Circulation
;
physiology
;
Chromatography, High Pressure Liquid
;
Culture Media, Conditioned
;
pharmacology
;
Disease Models, Animal
;
Endothelial Cells
;
metabolism
;
Gene Expression Regulation
;
physiology
;
Glia Maturation Factor
;
metabolism
;
In Situ Nick-End Labeling
;
Lung Injury
;
etiology
;
metabolism
;
pathology
;
Male
;
Neuroglia
;
metabolism
;
Neurologic Examination
;
Peroxidase
;
metabolism
;
Proteome
;
RNA Interference
;
physiology
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Tandem Mass Spectrometry
2.Terminalia arjuna bark extract attenuates picrotoxin-induced behavioral changes by activation of serotonergic, dopaminergic, GABAergic and antioxidant systems.
Y CHANDRA SEKHAR ; G PHANI KUMAR ; K R ANILAKUMAR
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):584-596
Stress and emotion are associated with several illnesses from headaches to heart diseases and immune deficiencies to central nervous system. Terminalia arjuna has been referred as traditional Indian medicine for several ailments. The present study aimed to elucidate the effect of T. arjuna bark extract (TA) against picrotoxin-induced anxiety. Forty two male Balb/c mice were randomly divided into six experimental groups (n = 7): control, diazepam (1.5 mg·kg), picrotoxin (1 mg·kg) and three TA treatemt groups (25, 50, and 100 mg/kg). Behavioral paradigms and PCR studies were performed to determine the effect of TA against picrotoxin-induced anxiety. The results showed that TA supplementation increased locomotion towards open arm (EPM) and illuminated area (light-dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, TA increased number of licks and shocks in Vogel's conflict. PCR studies showed an up-regulation of several genes, such as BDNF, IP, DL, CREB, GABA, SOD, GPx, and GR in TA administered groups. In conclusion, alcoholic extract of TA bark showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes.
Animals
;
Antioxidants
;
metabolism
;
Anxiety Disorders
;
drug therapy
;
genetics
;
metabolism
;
psychology
;
Brain-Derived Neurotrophic Factor
;
genetics
;
metabolism
;
Dopamine Agents
;
administration & dosage
;
GABA Agents
;
administration & dosage
;
Glutathione Peroxidase
;
genetics
;
metabolism
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Neuronal Plasticity
;
drug effects
;
Neurotransmitter Agents
;
metabolism
;
Phytotherapy
;
Picrotoxin
;
adverse effects
;
Plant Bark
;
chemistry
;
Plant Extracts
;
administration & dosage
;
Serotonin Agents
;
administration & dosage
;
Superoxide Dismutase-1
;
genetics
;
metabolism
;
Terminalia
;
chemistry
3.Interaction of MIF gene -173G/C polymorphism and GPX1 gene 594C/T polymorphism with high-fat diet in ulcerative colitis.
Chaoxian ZHANG ; Like GUO ; Yongmei QIN
Chinese Journal of Medical Genetics 2016;33(1):85-90
OBJECTIVETo investigate the interaction of single nucleotide polymorphisms of macrophage migration inhibitory factor (MIF) gene -173G/C and glutathione peroxidase 1(GPX1) gene 594C/T polymorphisms and high-fat diet in ulcerative colitis (UC).
METHODSThe genetic polymorphisms of MIF -173G/C and GPX1 594C/T were determined with a polymorphism-polymerase chain reaction (PCR)-endonuclease method in peripheral blood leukocytes derived from 1500 UC cases and 1500 healthy controls.
RESULTSThe frequencies of MIF -173CC and GPX1 594TT were 55.60% and 55.73% in the UC cases and 16.67% and 16.47% in the healthy controls, respectively. Statistical tests also showed a significant difference in the frequencies between the two groups (P<0.01; P<0.01, respectively). Individuals carrying MIF -173CC also had a significantly higher risk of UC compared with those with MIF -173GG (OR=6.8662, 95%CI: 4.5384-9.6158). Individuals carrying GPX1 594TT had a high risk of UC (OR=7.0854, 95%CI: 4.4702-10.5283). Combined analysis showed that the percentages of MIF -173CC/GPX1 594TT in the UC and control groups were 31.00% and 2.73%, respectively (P<0.01). Individuals carrying MIF -173CC/GPX1 594TT had a high risk of UC (OR=49.0113, 95%CI: 31.7364-61.8205). The high-fat diet rate of the case group was significantly higher than that of the control group (OR=3.3248, 95%CI: 1.9461-5.0193, P<0.01), and statistic analysis suggested an interaction between high-fat diet and MIF -173CC and GPX1 594TT which increase risk of UC (γ =6.9293; γ =6.9942).
CONCLUSIONMIF -173CC and GPX1 594TT and high-fat diet are the risk factors for UC, and the significant interactions between genetic polymorphisms of MIF -173G/C, GPX1 594C/T and high-fat diet may increase the risk for UC.
Case-Control Studies ; Colitis, Ulcerative ; enzymology ; genetics ; metabolism ; psychology ; Diet, High-Fat ; adverse effects ; Dietary Fats ; metabolism ; Feeding Behavior ; Female ; Gene-Environment Interaction ; Genetic Predisposition to Disease ; Glutathione Peroxidase ; genetics ; Humans ; Intramolecular Oxidoreductases ; genetics ; Macrophage Migration-Inhibitory Factors ; genetics ; Male ; Polymorphism, Single Nucleotide ; Risk Factors
4.Improved Survival and Neurological Outcomes after Cardiopulmonary Resuscitation in Toll-like Receptor 4-mutant Mice.
Li XU ; Qing ZHANG ; Qing-Song ZHANG ; Qian LI ; Ji-Yuan HAN ; Peng SUN
Chinese Medical Journal 2015;128(19):2646-2651
BACKGROUNDToll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system and noninfectious immune responses. It has been reported that TLR4 participates in the pathological course of ischemia/reperfusion (I/R) injury. However, the role of TLR4 in the process of I/R injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) is still unknown. In this study, we investigated the effects of TLR4 mutation on survival and neurological outcome in a mouse model of CA/CPR.
METHODSA model of potassium-induced CA was performed on TLR4-mutant mice (C3H/HeJ) and wild-type mice (C3H/HeN). After 3 min of untreated CA, resuscitation was attempted with chest compression, ventilation, and intravenous epinephrine. Behavioral tests were performed on mice on day 3 after CPR. The morphological changes in hippocampal neurons were assessed by light and electron microscopy. Expressions of TLR4 and intercellular adhesion molecule-1 (ICAM-1) were detected by Western blot. Levels of tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) were measured with enzyme-linked immunosorbent assay (ELISA).
RESULTSOn day 3 after resuscitation the overall mortality was 33.33% in C3H/HeJ group compared with 53.33% in C3H/HeN group (P < 0.05). And there was much higher central tendency in C3H/HeJ group than C3H/HeN group during open field test (P < 0.05). Meanwhile, the percentage of nonviable neurons was 21.16% in C3H/HeJ group compared with 53.11% in C3H/HeN group (P < 0.05). And there were significantly lower levels of hippocampal TNF-α and MPO in C3H/HeJ mice (TNF-α: 6.85±1.19 ng/mL, MPO: 0.33±0.11 U/g) than C3H/HeN mice (TNF-α: 11.36±2.12 ng/mL, MPO: 0.54±0.17 U/g) (all P < 0.01). CPR also significantly increased the expressions of TLR4 and ICAM-1 in C3H/HeN group. However, the expression of ICAM-1 was much lower in C3H/HeJ group than in C3H/HeN group after CPR (P < 0.01).
CONCLUSIONTLR4 signaling is involved in brain damage and in inflammation triggered by CA/CPR.
Animals ; Blotting, Western ; Brain ; immunology ; metabolism ; Cardiopulmonary Resuscitation ; methods ; Heart Arrest ; genetics ; metabolism ; therapy ; Intercellular Adhesion Molecule-1 ; metabolism ; Male ; Mice ; Mutation ; Peroxidase ; metabolism ; Toll-Like Receptor 4 ; genetics ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
5.Interaction of Polymorphisms of Resistin Gene Promoter -420C/G, Glutathione Peroxidase -1 Gene Pro198Leu and Cigarette Smoking in Nonalcoholic Fatty Liver Disease.
Chao-Xian ZHANG ; Li-Ke GUO ; Yong-Mei QIN ; Guang-Yan LI
Chinese Medical Journal 2015;128(18):2467-2473
BACKGROUNDMany studies have suggested that cigarette smoking and polymorphisms of resistin and glutathione peroxidase-1 (GPx-1) genes are closely correlated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, few reports have investigated these associations with respect to NAFLD susceptibility. We, therefore, examined the distribution of polymorphisms in GPx-1 and resistin genes in NAFLD patients and healthy controls and analyzed the relationship between these polymorphisms and smoking status.
METHODSNine hundred NAFLD patients and 900 healthy controls were selected, and the genetic polymorphisms of resistin gene promoter-420C/G and GPx-1 gene Pro198Leu were analyzed by polymorphism-polymerase chain reaction (PCR) in DNA extracted from peripheral blood leukocytes. Interactions between the two mutants and the gene-environment interaction with cigarette smoking were also analyzed.
RESULTSGenotype frequencies of -420C/G (GG) and Pro198Leu (LL) were significantly higher in NAFLD cases (49.56% and 50.11%, respectively) compared with healthy controls (23.67% and 24.22%, respectively) (P = 0.0069; P = 0.0072). Moreover, the risk of NAFLD with -420C/G (GG) was significantly higher than in controls (odds ratio [OR] =3.1685, 95% confidence interval (CI) =1.9366-5.2073). Individuals carrying Pro198Leu (LL) had a high risk of NAFLD (OR = 3.1424, 95% CI = 1.7951-5.2367). Combined analysis of the polymorphisms showed that the -420C/G (GG)/Pro198Leu (LL) genotype was significantly more common in the NAFLD group than in the control group (39.44% vs. 12.78%, respectively, P = 0.0054), while individuals with -420C/G (GG)/Pro198Leu (LL) had a high risk of NAFLD (OR = 5.0357, 95% CI = 3.1852-7.8106). Moreover, the cigarette smoking rate in the NAFLD group was significantly higher than in the control group (OR = 1.8990, P = 0.0083 in the smoking index (SI) ≤400 subgroup; OR = 5.0937, P = 0.0051 in the SI >400 subgroup), and statistical analysis suggested a positive interaction between cigarette smoking and -420C/G (GG) (γ = 5.6018 in the SI ≤400 subgroup; γ = 4.4770 in the SI >400 subgroup) and Pro198Leu (LL) (γ = 5.7715 in the SI ≤400 subgroup; γ = 4.5985 in the SI >400 subgroup) in increasing the risk of NAFLD.
CONCLUSIONNAFLD risk factors include -420C/G (GG), Pro198Leu (LL) and cigarette smoking, and these three factors have a significant additive effect on NAFLD risk.
Female ; Genetic Predisposition to Disease ; genetics ; Glutathione Peroxidase ; genetics ; Humans ; Male ; Non-alcoholic Fatty Liver Disease ; metabolism ; Polymorphism, Single Nucleotide ; genetics ; Promoter Regions, Genetic ; genetics ; Resistin ; genetics ; Smoking ; genetics
6.Expression profiles analysis of two member of squaleneepoxidase gene family from Eleutherococcus senticosus.
Yue-Hong LONG ; Fei-Fei LI ; Guo YANG ; Zhao-Bin XING
China Journal of Chinese Materia Medica 2015;40(1):59-62
In order to find the characteristics of two members of gene family of squaleneexpoxidase (SE) , a quantitative real time PCR method was developed to analyze the expression of Eleutherococcus senticosus SE1 and SE2 gene from different growth periods and in different organs. The result indicated that all the expression of SE2 more than SE1 in the whole growth period and organs of E. senticosus. And in the whole growth period, expression of SE1 showed a low-high-low characteristic. Both expression of SE2 and growth period showed the same trend. The lowest content of the expression was in the roots. SE1 expression have been improved more than SE2 when treated with MeJA. The expression of E. senticosus SE1 and saponins content had significantly positive correlation (P < 0.05) and the correlation coefficients was 0. 858, while the correlation was not significant for SE2. That indicated that SE1 played a key enzyme gene in the biosynthesis of triterpenoidsaponins
Eleutherococcus
;
chemistry
;
enzymology
;
genetics
;
growth & development
;
Gene Expression Regulation, Plant
;
Peroxidase
;
genetics
;
metabolism
;
Plant Proteins
;
genetics
;
metabolism
;
Saponins
;
analysis
;
metabolism
;
Transcriptome
7.Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.
Xin YAO ; Nan CHEN ; Chun-Hua MA ; Jing TAO ; Jian-An BAO ; Zong-Qi CHENG ; Zu-Tao CHEN ; Li-Yan MIAO
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):52-58
In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
metabolism
;
Animals
;
Bronchoalveolar Lavage Fluid
;
cytology
;
Cell Count
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Gene Expression
;
drug effects
;
Ginkgo biloba
;
chemistry
;
Interleukin-1beta
;
analysis
;
Interleukin-6
;
analysis
;
Lipopolysaccharides
;
Lung
;
immunology
;
pathology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Peroxidase
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
Pulmonary Edema
;
Superoxide Dismutase
;
metabolism
;
Transcription Factor RelA
;
genetics
;
metabolism
;
Tumor Necrosis Factor-alpha
;
analysis
8.Anti-inflammatory effects of Reduning Injection on lipopolysaccharide-induced acute lung injury of rats.
Lu-ping TANG ; Wei XIAO ; Yi-fang LI ; Hai-bo LI ; Zhen-zhong WANG ; Xin-sheng YAO ; Hiroshi KURIHARA ; Rong-rong HE
Chinese journal of integrative medicine 2014;20(8):591-599
OBJECTIVETo evaluate the protective effects of Reduning Injection (, RDN), a patent Chinese medicine, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and its underlying mechanisms of action.
METHODSSixty male Sprague-Dawley rats were randomly divided into 6 groups, including normal control, model, dexamethasone (DEX, 5 mg/kg), RDN-H (720 mg/kg), RDN-M (360 mg/kg) and RDN-L (180 mg/kg) groups, with 10 rats in each group. Rats were challenged with intravenous injection of LPS 1 h after intraperitoneal treatment with RDN or DEX. At 6 h after LPS challenge, lung tissues and bronchoalveolar lavage fluid (BALF) were collected, and the number of inflammatory cells was determined. The right lungs were collected for histopathologic examination, measurement of gene and protein expressions, superoxide dismutase (SOD) and myeloperoxidase (MPO) activities.
RESULTSIn vivo pretreatment of RDN (360, 720 mg/kg) significantly reduced the weight of wet to dry (W/D) ratio of lung, protein content in BALF, and led to remarkable attenuation of LPS-induced histopathological changes in the lungs. Meanwhile, RDN enormously decreased BALF total inflammatory cells, especially neutrophil and macrophage cell numbers. Moreover, RDN increased SOD activity, inhibited MPO activity, alleviated LPS-induced tumor neurosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression in lung tissues. Furthermore, RDN (720 mg/kg) efficiently weakened nuclear factorkappa B (NF-κB) gene and protein expression.
CONCLUSIONAnti-inflammatory effects of RDN was demonstrated to be preventing pulmonary neutrophil infiltration, lowering MPO activity, TNF-α and iNOS gene expression by inhibiting NF-κB activity in LPS-induced ALI.
Acute Lung Injury ; drug therapy ; enzymology ; pathology ; Animals ; Anti-Inflammatory Agents ; administration & dosage ; chemistry ; pharmacology ; therapeutic use ; Bronchoalveolar Lavage Fluid ; cytology ; Cell Count ; Chromatography, High Pressure Liquid ; Drugs, Chinese Herbal ; administration & dosage ; chemistry ; pharmacology ; therapeutic use ; Gene Expression Regulation ; drug effects ; Injections ; Lipopolysaccharides ; Lung ; drug effects ; enzymology ; pathology ; Male ; NF-kappa B ; genetics ; metabolism ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; Peroxidase ; metabolism ; Rats, Sprague-Dawley ; Superoxide Dismutase ; metabolism ; Tumor Necrosis Factor-alpha ; genetics ; metabolism
9.Efficacy of topical versus oral 5-aminosalicylate for treatment of 2,4,6-trinitrobenzene sulfonic acid-induced ulcerative colitis in rats.
Jin LI ; Cheng CHEN ; Xiao-nian CAO ; Gui-hua WANG ; Jun-bo HU ; Jing WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):59-65
5-aminosalicylic acid (5-ASA) is drug of choice for the treatment of ulcerative colitis (UC). In this study, the efficacy of topical versus oral 5-ASA for the treatment of UC was examined as well as the action mechanism of this medication. A flexible tube was inserted into the rat cecum to establish a topical administration model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC. A total of 60 rats were divided into sham operation group (receiving an enema of 0.9% saline solution instead of the TNBS solution via the tube), model group, topical 5-ASA group, oral Etiasa group (a release agent of mesalazine used as positive control) and oral 5-ASA group (n=12 each). Different treatments were administered 1 day after UC induction. The normal saline (2 mL) was instilled twice a day through the tube in the sham operation group and model group. 5-ASA was given via the tube in the topical 5-ASA group (7.5 g/L, twice per day, 100 mg/kg), and rats in the oral Etiasa group and oral 5-ASA group intragastrically received Etiasa (7.5 g/L, twice per day, 100 mg/kg) and 5-ASA (7.5 g/L, twice per day, 100 mg/kg), respectively. The body weight was recorded every day. After 7 days of treatment, blood samples were drawn from the heart to harvest the sera. Colonic tissues were separated and prepared for pathological and related molecular biological examinations. The concentrations of 5-ASA were detected at different time points in the colonic tissues, feces and sera in different groups by using the high pressure liquid chromatography (HPLC). The results showed that the symptoms of acute UC, including bloody diarrhea and weight loss, were significantly improved in topical 5-ASA-treated rats. The colonic mucosal damage, both macroscopical and histological, was significantly relieved and the myeloperoxidase activity was markedly decreased in rats topically treated with 5-ASA compared with those treated with oral 5-ASA or Etiasa. The mRNA and protein expression of IL-1β, IL-6, and TNF-α was down-regulated in the colonic tissue of rats topically treated with 5-ASA, significantly lower than those from rats treated with oral 5-ASA or Etiasa. The concentrations of 5-ASA in the colonic tissue were significantly higher in the topical 5-ASA group than in the oral 5-ASA and oral Etiasa groups. It was concluded that the topical administration of 5-ASA can effectively increase the concentration of 5-ASA in the colonic tissue, decrease the expression of proinflammatory cytokines, alleviate the colonic pathological damage and improve the symptoms of TNBS-induced acute UC in rats.
Administration, Oral
;
Administration, Topical
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
administration & dosage
;
pharmacology
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Colon
;
drug effects
;
metabolism
;
pathology
;
Down-Regulation
;
drug effects
;
Drug Administration Schedule
;
Gene Expression
;
drug effects
;
Immunohistochemistry
;
Interleukin-1beta
;
genetics
;
metabolism
;
Interleukin-6
;
genetics
;
metabolism
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mesalamine
;
administration & dosage
;
pharmacology
;
Peroxidase
;
metabolism
;
Rats
;
Rats, Wistar
;
Reverse Transcriptase Polymerase Chain Reaction
;
Time Factors
;
Treatment Outcome
;
Trinitrobenzenesulfonic Acid
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
10.Study on inhibitory effect of lycium pigment on lipopolysaccharide-induced uveitis in rats and its mechanism.
Jin ZHANG ; Fei-Fei ZHAO ; Shuang BAI ; Jie ZHENG ; Ping ZHENG ; Gui-Dong DAI
China Journal of Chinese Materia Medica 2013;38(11):1778-1782
OBJECTIVETo investigate the inhibitory effect of lycium pigment on lipopolysaccharide (LPS)-induced uveitis in rats and its mechanism.
METHODThe rat uveitis model was established by 30-day oral administration of lycium pigment (50, 100, 200 mg x kg(-1)) and footpad injection of LPS. Ocular tissues were collected for a histopathological inspection. The protein, nitric oxide and ADMA in aqueous humor, level of inducible nitric oxide synthase (iNOS) in retina, activities of serum total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and content of malondialdehyde (MDA) were determined by using Western blot, ELISA and biochemical methods.
RESULTAccording to the pathological study, lycium pigment (50, 100, 200 mg x kg(-1)) could notably reduce the inflammatory cell infiltration around corpus ciliare matrix of uveitis rats, and the concentration of protein and nitric oxide, and increased ADMA in aqueous humor. Lycium pigment (100, 200 mg x kg(-1)) could significantly inhibit the expression of iNOS in ocular tissues. In addition, lycium pigment (100, 200 mg x kg(-1)) also decrease the activities of serum T-AOC, SOD, GSH-PX, and the content of lipid peroxide MDA.
CONCLUSIONLycium pigment has the inhibitory effect on LPS-induced uveitis in rats. Its mechanism is related to the regulation of nitric oxide/ADMA pathway and the improvement of oxidation resistance.
Animals ; Glutathione Peroxidase ; genetics ; metabolism ; Humans ; Lipopolysaccharides ; adverse effects ; Lycium ; chemistry ; Male ; Malondialdehyde ; metabolism ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; Pigments, Biological ; administration & dosage ; Plant Extracts ; administration & dosage ; Rats ; Rats, Sprague-Dawley ; Superoxide Dismutase ; genetics ; metabolism ; Uveitis ; chemically induced ; genetics ; metabolism ; prevention & control

Result Analysis
Print
Save
E-mail