1.Correlation analysis of peri-implant health after single-tooth dental implant.
Journal of Peking University(Health Sciences) 2025;57(2):347-353
OBJECTIVE:
To observe the long-term health condition of the single-tooth dental implant at the first molar site, and to evaluate the related factors affecting the peri-implant health.
METHODS:
In this study, 82 patients who were treated in the Second Clinical Division, Peking University School and Hos-pital of Stomatology from January 2008 to December 2020 were enrolled. Peri-implant tissue conditions were assessed by clinical and radiographic examination. The peri-implant probing depth (PPD), modified sulcus bleeding index (mSBI), modified plaque index (mPLI) and papilla index (PI) were recorded for 278 implants. The X-ray analysis included the restoration emergence angle (REA), the clinical crown-implant ratio (cC/I), the horizontal tooth-implant distance (HTID), the contact point level (CPL) and the embrasure surface area (ESA), etc. Kruskal-Wallis rank sum test and generalized estimation equation were used for statistical analysis.
RESULTS:
The average age of the patients was (40.2±9.5) years (19 to 84 years), with 33 males and 49 females. The follow-up time was (4.9±3.3) years (1 to 10 years). According to the diagnostic criteria in 2018, the prevalence of peri-implantitis in this study was 14.03% on the implant level and 21.95% on the patient level. The peri-implant health rate was 19.06% on the implant level and 18.29% on the patient level. The prevalence of peri-implant mucositis was 66.91% on the implant level and 59.75% on the patient level. At the baseline, there were statistically significant differences between the peri-implant health group and peri-implantitis group in PPD, distal HTID and mesial/distal CPL, cC/I (P < 0.05), while there was no statistically significant difference in mSBI, mPLI, PI, mesial HTID, mesial/distal REA and mesial/distal ESA between the two groups. Among the differences between follow-up and baseline, there were statistically significant dif-ferences between the two groups in PPD, mesial/distal HTID, mesial/distal CPL and mesial/distal ESA (P < 0.05). Generalized estimation equation showed that PPD, mesial/distal HTID, mesial CPL, and mesial ESA had significant positive correlations with the risk of peri-implantitis in the difference between baseline and follow-up.
CONCLUSION
Based on the results of this study, the peri-implant health rate is still unsatisfied, and the PPD, HTID, CPL, ESA may be related to the long-term health of the implant.
Humans
;
Male
;
Female
;
Middle Aged
;
Adult
;
Dental Implants, Single-Tooth/adverse effects*
;
Aged
;
Aged, 80 and over
;
Periodontal Index
;
Young Adult
;
Peri-Implantitis/epidemiology*
2.Epigenetic factors associated with peri-implantitis: a review.
Qianhui LI ; Hongye LU ; Mengyuan ZHANG ; Yuting YE ; Qianming CHEN ; Ping SUN
Journal of Zhejiang University. Science. B 2025;26(7):657-674
Peri-implant diseases are characterized by the resorption of hard tissue and the inflammation of soft tissue. Epigenetics refers to alterations in the expression of genes that are not encoded in the DNA sequence, influencing diverse physiological activities, including immune response, inflammation, and bone metabolism. Epigenetic modifications can lead to tissue-specific gene expression variations among individuals and may initiate or exacerbate inflammation and disease predisposition. However, the impact of these factors on peri-implantitis remains inconclusive. To address this gap, we conducted a comprehensive review to investigate the associations between epigenetic mechanisms and peri-implantitis, specifically focusing on DNA methylation and microRNAs (miRNAs or miRs). We searched for relevant literature on PubMed, Web of Science, Scopus, and Google Scholar with keywords including "epigenetics," "peri-implantitis," "DNA methylation," and "microRNA." DNA methylation and miRNAs present a dynamic epigenetic mechanism operating around implants. Epigenetic modifications of genes related to inflammation and osteogenesis provide a new perspective for understanding how local and environmental factors influence the pathogenesis of peri-implantitis. In addition, we assessed the potential application of DNA methylation and miRNAs in the prevention, diagnosis, and treatment of peri-implantitis, aiming to provide a foundation for future studies to explore potential therapeutic targets and develop more effective management strategies for this condition. These findings also have broader implications for understanding the pathogenesis of other inflammation-related oral diseases like periodontitis.
Peri-Implantitis/genetics*
;
Humans
;
Epigenesis, Genetic
;
DNA Methylation
;
MicroRNAs/genetics*
3.Community dynamics during de novo colonization of the nascent peri-implant sulcus.
Tamires Pereira DUTRA ; Nicolas ROBITAILLE ; Khaled ALTABTBAEI ; Shareef M DABDOUB ; Purnima S KUMAR
International Journal of Oral Science 2025;17(1):37-37
Dental implants have restored masticatory function to over 100 000 000 individuals, yet almost 1 000 000 implants fail each year due to peri-implantitis, a disease triggered by peri-implant microbial dysbiosis. Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis. Therefore, we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing, fine-scale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus. We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies. Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement. These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation. Unlike the periodontal microbiome, recruitment of new members to the peri-implant community occurs on nepotistic principles. Maturation is accompanied by a progressive increase in anaerobiosis, however, the predominant functionalities are oxygen-dependent over the 12-weeks. The peri-implant community is easily perturbed following crown placement, but demonstrates remarkable resilience; returning to pre-perturbation states within three weeks. This study highlights important differences in the development of the periodontal and peri-implant ecosystems, and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.
Humans
;
Dental Implants/microbiology*
;
Microbiota
;
Male
;
Adult
;
Female
;
Biofilms
;
Middle Aged
;
Peri-Implantitis/microbiology*
4.Guided bone regeneration therapy based on plaque control of peri-implantitis with follow-up at 7 years.
Wenqi SU ; Dandan ZHANG ; Yan CHENG ; Wenjie CUI ; Lang LEI ; Houxuan LI
West China Journal of Stomatology 2025;43(1):133-139
Peri-implantitis is a pathologic condition associated with dental plaque that occurs in the implant tissue and is characterized by inflammation of the mucous membrane surrounding the implant, followed by the progressive loss of supporting bone. In this study, a case of guided bone regeneration therapy based on plaque control of peri-implant inflammation was reported. Four years after surgery for the left second premolar implant, the patient presented with "left lower posterior tooth swelling and discomfort for more than 2 years". The X-ray periapical film showed a decrease in distal bone mineral density of implant, and the clinical diagnosis was peri-implantitis of the left second premolar. Implants underwent guided bone regeneration and regular periodontal maintenance treatment. Re-examination at 3.5 months, 11 months, 18 months, and 7 years showed that the alveolar bone height and bone mineral density were stable, and the periodontal depth became shallow. However, the gingival recession was mild. In the present case, follow-up at 7 years demonstrated that the clinical periodontal indexes could be remarkably improved after complete periodontal treatment for peri-implantitis, and the alveolar bone could be well restored and regenerated.
Humans
;
Peri-Implantitis/etiology*
;
Follow-Up Studies
;
Bone Regeneration
;
Guided Tissue Regeneration, Periodontal/methods*
;
Dental Plaque/prevention & control*
;
Male
;
Female
;
Dental Implants/adverse effects*
5.Efficacy of adjunctive systemic or local antibiotic therapy in peri-implantitis: a systematic review and meta-analysis of randomized controlled clinical trials.
Yifan LU ; Siqi BAO ; Hongke LUO ; Qianming CHEN ; Misi SI
Journal of Zhejiang University. Science. B 2024;26(2):145-157
This systematic review and meta-analysis considered the results of randomized controlled clinical trials (RCTs) to evaluate the efficacy of systemic or local antibiotic therapy in peri-implantitis. Two independent authors screened publications from three electronic databases to include RCTs meeting all the inclusion and exclusion criteria. A meta-analysis was performed to evaluate the weighted mean differences in survival rate (SR) and changes in pocket probing depth (PPD), bone level (BL), and clinical attachment level (CAL). The study cohorts were defined as antibiotic and control groups with subgroups for analysis. Seven studies including 309 patients (390 implants) were considered. Within the limitations of this review, patients in the antibiotic groups exhibited significant improvements in PPD. Subgroup analysis indicated that the administration of systemic antibiotics or the use of antibiotics in non-surgical treatments did not result in a significant alteration in BL. It was established that the addition of antibiotics can ameliorate PPD and SR in the treatment of peri-implantitis, whether through surgical or non-surgical approaches, and also shows moderate performance regarding BL and CAL. Considering the lack of application of new technologies in the control group and the hardship of assessing the potential risks of antibiotics, careful clinical judgment is still necessary.
Humans
;
Peri-Implantitis/drug therapy*
;
Anti-Bacterial Agents/therapeutic use*
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
6.Research progress in the association of peri-implant diseases and metabolic syndrome.
Qing Ci KONG ; Xiao Jun HU ; Qi Mei GONG
Chinese Journal of Stomatology 2023;58(1):75-80
Peri-implant disease, an important group of diseases that cause implant failure, are associated with metabolic abnormality. Metabolic syndrome (MetS) is a common metabolic disorder comprising abdominal obesity, hyperglycemia, systemic hypertension and atherogenic dyslipidemia. Previous studies had reported that MetS and its diversified clinical manifestations might be associated with peri-implant diseases, but the relationship and underlying mechanisms were unclear. This review aims to explore the relationship between MetS and peri-implant disease, in order to provide beneficial reference for the prevention and treatment of peri-implant disease in patients with MetS.
Humans
;
Metabolic Syndrome/complications*
;
Peri-Implantitis
;
Dental Implants/adverse effects*
;
Hypertension/complications*
;
Risk Factors
7.Titanium particles in peri-implantitis: distribution, pathogenesis and prospects.
Long CHEN ; Zian TONG ; Hongke LUO ; Yuan QU ; Xinhua GU ; Misi SI
International Journal of Oral Science 2023;15(1):49-49
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Humans
;
Peri-Implantitis/pathology*
;
Titanium/pharmacology*
;
Dental Implants/adverse effects*
;
Osteolysis/pathology*
;
Inflammation/chemically induced*
8.Comparison of three methods for establishing rat peri-implantitis model.
Ling Wei MENG ; Xue LI ; Sheng Han GAO ; Yue LI ; Rui Tao CAO ; Yi ZHANG ; Shao Xia PAN
Journal of Peking University(Health Sciences) 2023;55(1):22-29
OBJECTIVE:
To compare the efficiency and effect of establishing rat peri-implantitis model by traditional cotton thread ligation and local injection of Porphyromonas gingivalis lipopolysaccharide (LPS) around the implant, as well as the combination of the two methods.
METHODS:
Left side maxillary first molars of 39 male SD rats were extracted, and titanium implants were implanted after four weeks of healing. After 4 weeks of implant osseointegration, 39 rats were randomly divided into 4 groups. Cotton thread ligation (n=12), local injection of LPS around the implant (n=12), and the two methods combined (n=12) were used to induce peri-implantitis, the rest 3 rats were untreated as control group. All procedures were conducted under 5% isoflurane inhalation anesthesia. The rats were sacrificed 2 weeks and 4 weeks after induction through carbon dioxide asphyxiation method. The maxilla of the rats in the test groups were collected and marginal bone loss was observed by micro-CT. The gingival tissues around the implants were collected for further real time quantitative PCR (RT-qPCR) analysis, specifically the expression of tumor necrosis factor-alpha (TNF-α) as well as interleukin-1β (IL-1β). The probing depth (PD), bleeding on probing (BOP) and gingival index (GI) of each rat in the experimental group were recorded before induction of inflammation and before death.
RESULTS:
After 4 weeks of implantation, the osseointegration of implants were confirmed. All the three test groups showed red and swollen gums, obvious marginal bone loss around implants. After 2 weeks and 4 weeks of inflammation induction, PD, GI and BOP of the three test groups increased compared with those before induction, but only BOP was statistically significant among the three test groups (P < 0.05). At the end of 2 weeks of inflammation induction, marginal bone loss was observed at each site in the cotton thread ligation group and the combined group. At each site, the bone resorption in the combined group was greater than that in the cotton thread ligation group, but the difference was not statistically significant (P > 0.05), bone resorption was observed at some sites of some implants in LPS local injection group. At the end of 4 weeks of inflammation induction, marginal bone loss was observed at all sites in each group. The marginal bone loss in the cotton thread ligation group and the combined group was greater than that in the LPS local injection group, and the difference was statistically significant (P < 0.05). At the end of 2 weeks and 4 weeks of induction, the expression of TNF-α and IL-1β in the test groups were higher than those in the control group (P < 0.05).
CONCLUSION
Compared with local injection of LPS around the implant, cotton thread ligature and the two methods combined can induce peri-implantitis in rats better and faster.
Animals
;
Male
;
Rats
;
Alveolar Bone Loss/etiology*
;
Dental Implants/adverse effects*
;
Inflammation
;
Lipopolysaccharides
;
Peri-Implantitis/pathology*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha
9.Profiles and differences of submucosal microbial in peri-implantitis and health implants: A cross-sectional study.
Fei SUN ; Jian LIU ; Si Qi LI ; Yi Ping WEI ; Wen Jie HU ; Cui WANG
Journal of Peking University(Health Sciences) 2023;55(1):30-37
OBJECTIVE:
To describe the submucosal microbial profiles of peri-implantitis and healthy implants, and to explore bacteria that might be correlated with clinical parameters.
METHODS:
In the present cross-sectional study, 49 patients were recruited. Each patient contributed with one implant, submucosal biofilms were collected from 20 healthy implants and 29 implants with peri-implantitis. DNA was extracted and bacterial 16S ribosomal RNA (16S rRNA) genes were amplified. Submucosal biofilms were analyzed using 16S rRNA sequencing at Illumina MiSeq platform. Differences between the groups were determined by analyzing α diversity, microbial component and microbial structure. The potential correlation between the bacteria with pocket probing depth (PPD) of peri-implant calculated by Spearman correlation analysis.
RESULTS:
The α diversity of submucosal microbial of health group was significantly lower than that in peri-implantitis group (Chao1 index: 236.85±66.13 vs. 150.54±57.43, P < 0.001; Shannon index: 3.42±0.48 vs. 3.02±0.65, P=0.032). Principal coordinated analysis showed that the submucosal microbial structure had significant difference between healthy and peri-implantitis groups [R2=0.243, P=0.001, analysis of similarities (ANOSIM)]. Compared with healthy implants, relative abundance of periodontal pathogens were higher in peri-implantitis, including members of the red complex (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and some members of orange complex (Precotella intermedia, Eubacterium nodatum, Parvimonas micra), as well as some new periodontal pathogens, such as Fillifactor alocis, Fretibacterium fastidiosum, Desulfobulbus sp._HMT_041, and Porphyromonas endodontalis. Spearman correlation analysis revealed that the relative abundance of Treponema denticola (r=0.686, P < 0.001), Tannerella forsythia (r=0.675, P < 0.001), Fretibacterium sp. (r=0.671, P < 0.001), Desulfobulbus sp._HMT_041 (r=0.664, P < 0.001), Filifactor alocis (r=0.642, P < 0.001), Fretibacterium fastidiosum (r=0.604, P < 0.001), Porphyromonas gingivalis (r=0.597, P < 0.001), Porphyromonas endodontalis (r=0.573, P < 0.001) were positive correlated with PPD. While the relative abundance of Rothia aeria (r=-0.615, P < 0.001) showed negatively correlation with PPD.
CONCLUSION
Marked differences were observed in the microbial profiles of healthy implants and peri-implantitis. The members of red and orange complex as well as some new periodontal pathogens seem to play an important role in peri-implant disease. Compared with healthy implants, the submucosal microbial of peri-implantitis were characterized by high species richness and diversity.
Humans
;
Peri-Implantitis/microbiology*
;
Cross-Sectional Studies
;
RNA, Ribosomal, 16S/genetics*
;
Bacterial Load
;
Porphyromonas gingivalis
;
Dental Implants
10.In vitro research of oral microscope-assisted implant surface decontamination.
Wenqi SU ; Jingwen LI ; Lishan JIANG ; Wenjie CUI ; Yang ZHAO ; Houxuan LI
West China Journal of Stomatology 2023;41(3):350-355
OBJECTIVES:
To investigate the effect of oral microscope-assisted surface decontamination on implants in vitro.
METHODS:
Twelve implants that fell off because of severe peri-implantitis were collected, and decontamination was carried out on the surfaces of implants through curetting, ultrasound, titanium brushing, and sandblasting at 1×, 8×, or 12.8× magnifications. The number and sizes of residues on the implants' surfaces after decontamination were determined, and the decontamination effect was analyzed according to the thread spacing in the different parts of the thread.
RESULTS:
1) The 8× and 12.8× groups scored lower for implant surface residues than the 1× group (P<0.000 1), and the 12.8× group scored lower than the 8× group (P<0.001); 2) no difference in residue score was found between the wide and narrow thread pitch (P>0.05), and the 8× and 12.8× groups had lower scores than the 1× group (P<0.001); 3) the lowest number of contaminants was observed at the tip of the thread, whereas the highest was observed below the thread, and the difference was significant (P<0.001). However, the thread pitch had no effect on the number of contaminants in different areas (P>0.05); 4) the residue scores of the 8× and 12.8× groups were lower than those of the 1× group at the thread tip and above, sag, and below the thread of the implants (P<0.05).
CONCLUSIONS
Residues on the surfaces of contaminated implants can be effectively removed by using an oral microscope. After decontamination, the residues of pollutants were mainly concentrated below the thread of the implants, and the thread pitch of the implants had no significant effect on the residues.
Humans
;
Dental Implants
;
Decontamination
;
Surface Properties
;
Peri-Implantitis
;
Titanium

Result Analysis
Print
Save
E-mail