1.Guided bone regeneration therapy based on plaque control of peri-implantitis with follow-up at 7 years.
Wenqi SU ; Dandan ZHANG ; Yan CHENG ; Wenjie CUI ; Lang LEI ; Houxuan LI
West China Journal of Stomatology 2025;43(1):133-139
Peri-implantitis is a pathologic condition associated with dental plaque that occurs in the implant tissue and is characterized by inflammation of the mucous membrane surrounding the implant, followed by the progressive loss of supporting bone. In this study, a case of guided bone regeneration therapy based on plaque control of peri-implant inflammation was reported. Four years after surgery for the left second premolar implant, the patient presented with "left lower posterior tooth swelling and discomfort for more than 2 years". The X-ray periapical film showed a decrease in distal bone mineral density of implant, and the clinical diagnosis was peri-implantitis of the left second premolar. Implants underwent guided bone regeneration and regular periodontal maintenance treatment. Re-examination at 3.5 months, 11 months, 18 months, and 7 years showed that the alveolar bone height and bone mineral density were stable, and the periodontal depth became shallow. However, the gingival recession was mild. In the present case, follow-up at 7 years demonstrated that the clinical periodontal indexes could be remarkably improved after complete periodontal treatment for peri-implantitis, and the alveolar bone could be well restored and regenerated.
Humans
;
Peri-Implantitis/etiology*
;
Follow-Up Studies
;
Bone Regeneration
;
Guided Tissue Regeneration, Periodontal/methods*
;
Dental Plaque/prevention & control*
;
Male
;
Female
;
Dental Implants/adverse effects*
2.Diagnosis, etiology, prevention and treatment in retrograde peri-implantitis.
Chinese Journal of Stomatology 2022;57(3):302-306
Retrograde peri-implantitis (RPI), a kind of rare biological complication in implant-supported prosthetic rehabilitation, has been reported more frequently in recent years. RPI is defined as the periapical lesion that occurs following implant placement while the coronal part of the implant achieves normal osseointegration. Due to the possibilities of asymptomatic clinical scenarios, RPI can easily be ignored if routine radiographic examination is absent postoperatively, which may postpone treatment and affect long-term outcome. The common cause is infection originating from the periapical lesion of the neighboring teeth, the residual bacteria at the implant site, the contaminated implant apex and etc. Treatment methods rely on the infection source and severity of defect. This article discusses the diagnosis, classification, etiology, and pathology as well as prevention and treatment of RPI in order to provide evidence for clinical decisions in the future.
Dental Implantation, Endosseous
;
Dental Implants/adverse effects*
;
Humans
;
Osseointegration
;
Peri-Implantitis/prevention & control*
3.Experimental research on Arginine-gingipain A gene vaccine from Porphyromonas gingivalis that prevents peri-implantitis in Beagle dogs.
Li CHUANHUA ; Wang ZHIFENG ; Zhu LINA ; Fan XIN ; Lan JING
West China Journal of Stomatology 2018;36(1):76-81
OBJECTIVE:
This study aims to use Arginine-gingipain A gene vaccine (pVAX1-rgpA) to immunize adult Beagle dogs and to evaluate its effect during peri-implantitis progression and development.
METHODS:
Plasmid pVAX1-rgpA was constructed. The second and third bilateral mandible premolars of 15 adult Beagle dogs were extracted, and the implants were placed immediately. After 3 months, the animals were randomly divided into groups A, B, and C. Afterward, the animals were immunized thrice with plasmid pVAX1-rgpA, with heat-killed Porphyromonas gingivalis, or pVAX1, respectively. IgG in the serum and secretory IgA (sIgA) in saliva were quantitatively analyzed by enzyme-linked immunosorbent assay before and after 2 weeks of immunization. Peri-implantitis was induced with cotton ligatures fixed around the neck of implants. Probing depth (PD) and bleeding on probing were recorded. All animals were sacrificed after ligaturation for 6 weeks. Decalcified sections with thickness of 50 μm were prepared and dyed with methylene blue to observe the bone phenotype around implants.
RESULTS:
Levels of serum IgG and sIgA in saliva were higher in groups A and B after immunization than before the process (P<0.05) and higher than those in group C (P<0.05). However, no difference was observed between groups A and B (P>0.05). At 4 and 6 weeks after ligaturation, PD of the ligatured side in group C was higher than that in groups A and B (P<0.05). On the other hand, no difference was identified between groups A and B (P>0.05). Bone loss in group A was significantly lower than that of the other groups (P<0.05). Abundant inflammatory cells and bacteria were present in the bone loss area around the implants in the three groups, as identified through hard tissue section observation. However, group C presented the most number of inflammatory cells and bacteria in the bone loss area around the implants.
CONCLUSIONS
IgG and sIgA can be generated by immunity with rgpA DNA vaccine, which can significantly slow down bone loss during experimental peri-implantitis in dogs.
Adhesins, Bacterial
;
therapeutic use
;
Alveolar Bone Loss
;
Animals
;
Arginine
;
Cysteine Endopeptidases
;
therapeutic use
;
Dental Implants
;
Dogs
;
Peri-Implantitis
;
prevention & control
;
Porphyromonas gingivalis
;
chemistry
;
Vaccines
;
therapeutic use

Result Analysis
Print
Save
E-mail