1.Community dynamics during de novo colonization of the nascent peri-implant sulcus.
Tamires Pereira DUTRA ; Nicolas ROBITAILLE ; Khaled ALTABTBAEI ; Shareef M DABDOUB ; Purnima S KUMAR
International Journal of Oral Science 2025;17(1):37-37
Dental implants have restored masticatory function to over 100 000 000 individuals, yet almost 1 000 000 implants fail each year due to peri-implantitis, a disease triggered by peri-implant microbial dysbiosis. Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis. Therefore, we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing, fine-scale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus. We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies. Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement. These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation. Unlike the periodontal microbiome, recruitment of new members to the peri-implant community occurs on nepotistic principles. Maturation is accompanied by a progressive increase in anaerobiosis, however, the predominant functionalities are oxygen-dependent over the 12-weeks. The peri-implant community is easily perturbed following crown placement, but demonstrates remarkable resilience; returning to pre-perturbation states within three weeks. This study highlights important differences in the development of the periodontal and peri-implant ecosystems, and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.
Humans
;
Dental Implants/microbiology*
;
Microbiota
;
Male
;
Adult
;
Female
;
Biofilms
;
Middle Aged
;
Peri-Implantitis/microbiology*
2.Profiles and differences of submucosal microbial in peri-implantitis and health implants: A cross-sectional study.
Fei SUN ; Jian LIU ; Si Qi LI ; Yi Ping WEI ; Wen Jie HU ; Cui WANG
Journal of Peking University(Health Sciences) 2023;55(1):30-37
OBJECTIVE:
To describe the submucosal microbial profiles of peri-implantitis and healthy implants, and to explore bacteria that might be correlated with clinical parameters.
METHODS:
In the present cross-sectional study, 49 patients were recruited. Each patient contributed with one implant, submucosal biofilms were collected from 20 healthy implants and 29 implants with peri-implantitis. DNA was extracted and bacterial 16S ribosomal RNA (16S rRNA) genes were amplified. Submucosal biofilms were analyzed using 16S rRNA sequencing at Illumina MiSeq platform. Differences between the groups were determined by analyzing α diversity, microbial component and microbial structure. The potential correlation between the bacteria with pocket probing depth (PPD) of peri-implant calculated by Spearman correlation analysis.
RESULTS:
The α diversity of submucosal microbial of health group was significantly lower than that in peri-implantitis group (Chao1 index: 236.85±66.13 vs. 150.54±57.43, P < 0.001; Shannon index: 3.42±0.48 vs. 3.02±0.65, P=0.032). Principal coordinated analysis showed that the submucosal microbial structure had significant difference between healthy and peri-implantitis groups [R2=0.243, P=0.001, analysis of similarities (ANOSIM)]. Compared with healthy implants, relative abundance of periodontal pathogens were higher in peri-implantitis, including members of the red complex (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and some members of orange complex (Precotella intermedia, Eubacterium nodatum, Parvimonas micra), as well as some new periodontal pathogens, such as Fillifactor alocis, Fretibacterium fastidiosum, Desulfobulbus sp._HMT_041, and Porphyromonas endodontalis. Spearman correlation analysis revealed that the relative abundance of Treponema denticola (r=0.686, P < 0.001), Tannerella forsythia (r=0.675, P < 0.001), Fretibacterium sp. (r=0.671, P < 0.001), Desulfobulbus sp._HMT_041 (r=0.664, P < 0.001), Filifactor alocis (r=0.642, P < 0.001), Fretibacterium fastidiosum (r=0.604, P < 0.001), Porphyromonas gingivalis (r=0.597, P < 0.001), Porphyromonas endodontalis (r=0.573, P < 0.001) were positive correlated with PPD. While the relative abundance of Rothia aeria (r=-0.615, P < 0.001) showed negatively correlation with PPD.
CONCLUSION
Marked differences were observed in the microbial profiles of healthy implants and peri-implantitis. The members of red and orange complex as well as some new periodontal pathogens seem to play an important role in peri-implant disease. Compared with healthy implants, the submucosal microbial of peri-implantitis were characterized by high species richness and diversity.
Humans
;
Peri-Implantitis/microbiology*
;
Cross-Sectional Studies
;
RNA, Ribosomal, 16S/genetics*
;
Bacterial Load
;
Porphyromonas gingivalis
;
Dental Implants

Result Analysis
Print
Save
E-mail