1.Metabolite alpha-ketoglutarate: a novel target of gasdermin C-dependent pyroptosis.
Yao ZHANG ; Wu JIAN ; Lu HE ; Jianhua WU
Chinese Medical Journal 2023;136(13):1630-1631
2.Progress in Application of Concentrated Growth Factor in Oral Tissue Regeneration.
Ying LU ; Si-Jun WANG ; Duo-Hong ZOU
Acta Academiae Medicinae Sinicae 2023;45(3):500-505
Tissue regeneration is an important engineering method for the treatment of oral soft and hard tissue defects.Growth factors,as one of the three elements of tissue regeneration,are a necessary condition for tissue regeneration.Concentrated growth factor(CGF)is a new generation of blood extract prepared by changing the centrifugal speed on the basis of the preparation of platelet-rich plasma(PRP)and platelet-rich fibrin(PRF).It contains abundant growth factors and a fibrin matrix with a three-dimensional network structure,being capable of activating angiogenesis and promoting tissue regeneration and healing.CGF has been widely used in the repair and regeneration of oral soft and hard tissues.This paper introduces the preparation and composition of CGF and reviews the application of CGF in oral implantation and the regeneration of oral bone tissue,periodontal tissue,and dental pulp tissue.
Platelet-Rich Plasma/metabolism*
;
Platelet-Rich Fibrin
;
Cell Proliferation
;
Bone and Bones
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Bone Regeneration
3.Analysis of Significant Genes and Pathways in Esophageal Cancer Based on Gene Expression Omnibus Database.
An-Yi SONG ; Lan MU ; Xiao-Yong DAI ; Li-Jun WANG ; Lai-Qiang HUANG
Chinese Medical Sciences Journal 2023;38(1):20-28
Objective To screen antigen targets for immunotherapy by analyzing over-expressed genes, and to identify significant pathways and molecular mechanisms in esophageal cancer by using bioinformatic methods such as enrichment analysis, protein-protein interaction (PPI) network, and survival analysis based on the Gene Expression Omnibus (GEO) database.Methods By screening with highly expressed genes, we mainly analyzed proteins MUC13 and EPCAM with transmembrane domain and antigen epitope from TMHMM and IEDB websites. Significant genes and pathways associated with the pathogenesis of esophageal cancer were identified using enrichment analysis, PPI network, and survival analysis. Several software and platforms including Prism 8, R language, Cytoscape, DAVID, STRING, and GEPIA platform were used in the search and/or figure creation.Results Genes MUC13 and EPCAM were over-expressed with several antigen epitopes in esophageal squamous cell carcinoma (ESCC) tissue. Enrichment analysis revealed that the process of keratinization was focused and a series of genes were related with the development of esophageal cancer. Four genes including ALDH3A1, C2, SLC6A1,and ZBTB7C were screened with significant P value of survival curve.Conclusions Genes MUC13 and EPCAM may be promising antigen targets or biomarkers for esophageal cancer. Keratinization may greatly impact the pathogenesis of esophageal cancer. Genes ALDH3A1, C2, SLC6A1,and ZBTB7C may play important roles in the development of esophageal cancer.
Humans
;
Esophageal Neoplasms/metabolism*
;
Esophageal Squamous Cell Carcinoma/metabolism*
;
Epithelial Cell Adhesion Molecule/metabolism*
;
Gene Expression Profiling/methods*
;
Gene Regulatory Networks
;
Gene Expression
;
Gene Expression Regulation, Neoplastic
;
Intracellular Signaling Peptides and Proteins
4.Clinical Significance of SFRP1 Gene Methylation in Patients with Childhood Acute Lymphoblastic Leukemia.
Jing YAN ; Wen-Peng WANG ; Xuan LI ; Wei HAN ; Feng-Qi QI ; Ji-Zhao GAO
Journal of Experimental Hematology 2023;31(2):377-382
OBJECTIVE:
To investigate the clinical significance of SFRP1 gene and its methylation in childhood acute lymphoblastic leukemia (ALL) .
METHODS:
Methylation-specific PCR (MSP) was used to detect the methylation status of SFRP1 gene in bone marrow mononuclear cells of 43 children with newly diagnosed ALL before chemotherapy (primary group) and when the bone marrow reached complete remission d 46 after induction of remission chemotherapy (remission group), the expression of SFRP1 mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of SFRP1 protein was detected by Western blot, and clinical data of children were collected, the clinical significance of SFRP1 gene methylation in children with ALL was analyze.
RESULTS:
The positive rate of SFRP1 gene promoter methylation in the primary group (44.19%) was significantly higher than that in the remission group (11.63%) (χ2=11.328, P<0.05). The relative expression levels of SFRP1 mRNA and protein in bone marrow mononuclear cells of children in the primary group were significantly lower than those in the remission group (P<0.05). Promoter methylation of SFRP1 gene was associated with risk level (χ2=15.613, P=0.000) and survival of children (χ2=6.561, P=0.010) in the primary group, children with SFRP1 hypermethylation had significantly increased risk and shortened event-free survival time, but no significant difference in other clinical data.
CONCLUSION
Hypermethylation of SFRP1 gene promoter may be involved in the development of childhood ALL, and its hypermethylation may be associated with poor prognosis.
Child
;
Humans
;
Clinical Relevance
;
DNA Methylation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Bone Marrow/metabolism*
;
RNA, Messenger/metabolism*
;
Membrane Proteins/genetics*
;
Intercellular Signaling Peptides and Proteins/metabolism*
5.Electroacupuncture Improves Blood-Brain Barrier and Hippocampal Neuroinflammation in SAMP8 Mice by Inhibiting HMGB1/TLR4 and RAGE/NADPH Signaling Pathways.
Yuan WANG ; Qiang WANG ; Di LUO ; Pu ZHAO ; Sha-Sha ZHONG ; Biao DAI ; Jia-Jyu WANG ; Yi-Tong WAN ; Zhi-Bin LIU ; Huan YANG
Chinese journal of integrative medicine 2023;29(5):448-458
OBJECTIVE:
To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.
METHODS:
Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.
RESULTS:
Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).
CONCLUSION
EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.
Mice
;
Humans
;
Animals
;
NADP/metabolism*
;
Toll-Like Receptor 4
;
HMGB1 Protein/metabolism*
;
Receptor for Advanced Glycation End Products/metabolism*
;
Blood-Brain Barrier/metabolism*
;
Neuroinflammatory Diseases
;
Electroacupuncture
;
Alzheimer Disease/therapy*
;
Hippocampus/metabolism*
;
Amyloid beta-Peptides/metabolism*
6.Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways.
Zhiwen YANG ; Zongyan YU ; Bo XIAO
Neuroscience Bulletin 2023;39(3):453-465
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Amino Acids
;
Myelin Sheath/metabolism*
;
Schwann Cells/metabolism*
;
Oligodendroglia/metabolism*
;
Signal Transduction
;
Intercellular Signaling Peptides and Proteins/metabolism*
7.Disrupted Maturation of Prefrontal Layer 5 Neuronal Circuits in an Alzheimer's Mouse Model of Amyloid Deposition.
Chang CHEN ; Jing WEI ; Xiaokuang MA ; Baomei XIA ; Neha SHAKIR ; Jessica K ZHANG ; Le ZHANG ; Yuehua CUI ; Deveroux FERGUSON ; Shenfeng QIU ; Feng BAI
Neuroscience Bulletin 2023;39(6):881-892
Mutations in genes encoding amyloid precursor protein (APP) and presenilins (PSs) cause familial forms of Alzheimer's disease (AD), a neurodegenerative disorder strongly associated with aging. It is currently unknown whether and how AD risks affect early brain development, and to what extent subtle synaptic pathology may occur prior to overt hallmark AD pathology. Transgenic mutant APP/PS1 over-expression mouse lines are key tools for studying the molecular mechanisms of AD pathogenesis. Among these lines, the 5XFAD mice rapidly develop key features of AD pathology and have proven utility in studying amyloid plaque formation and amyloid β (Aβ)-induced neurodegeneration. We reasoned that transgenic mutant APP/PS1 over-expression in 5XFAD mice may lead to neurodevelopmental defects in early cortical neurons, and performed detailed synaptic physiological characterization of layer 5 (L5) neurons from the prefrontal cortex (PFC) of 5XFAD and wild-type littermate controls. L5 PFC neurons from 5XFAD mice show early APP/Aβ immunolabeling. Whole-cell patch-clamp recording at an early post-weaning age (P22-30) revealed functional impairments; although 5XFAD PFC-L5 neurons exhibited similar membrane properties, they were intrinsically less excitable. In addition, these neurons received smaller amplitude and frequency of miniature excitatory synaptic inputs. These functional disturbances were further corroborated by decreased dendritic spine density and spine head volumes that indicated impaired synapse maturation. Slice biotinylation followed by Western blot analysis of PFC-L5 tissue revealed that 5XFAD mice showed reduced synaptic AMPA receptor subunit GluA1 and decreased synaptic NMDA receptor subunit GluN2A. Consistent with this, patch-clamp recording of the evoked L23>L5 synaptic responses revealed a reduced AMPA/NMDA receptor current ratio, and an increased level of AMPAR-lacking silent synapses. These results suggest that transgenic mutant forms of APP/PS1 overexpression in 5XFAD mice leads to early developmental defects of cortical circuits, which could contribute to the age-dependent synaptic pathology and neurodegeneration later in life.
Mice
;
Animals
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Mice, Transgenic
;
Neurons/metabolism*
;
Receptors, AMPA/metabolism*
;
Disease Models, Animal
8.Resveratrol and Sir2 Reverse Sleep and Memory Defects Induced by Amyloid Precursor Protein.
Yuping HAO ; Lingzhan SHAO ; Jianan HOU ; Yan ZHANG ; Yuqian MA ; Jinhao LIU ; Chuan XU ; Fujun CHEN ; Li-Hui CAO ; Yong PING
Neuroscience Bulletin 2023;39(7):1117-1130
Resveratrol (RES), a natural polyphenolic phytochemical, has been suggested as a putative anti-aging molecule for the prevention and treatment of Alzheimer's disease (AD) by the activation of sirtuin 1 (Sirt1/Sir2). In this study, we tested the effects of RES and Sirt1/Sir2 on sleep and courtship memory in a Drosophila model by overexpression of amyloid precursor protein (APP), whose duplications and mutations cause familial AD. We found a mild but significant transcriptional increase of Drosophila Sir2 (dSir2) by RES supplementation for up to 17 days in APP flies, but not for 7 days. RES and dSir2 almost completely reversed the sleep and memory deficits in APP flies. We further demonstrated that dSir2 acts as a sleep promotor in Drosophila neurons. Interestingly, RES increased sleep in the absence of dSir2 in dSir2-null mutants, and RES further enhanced sleep when dSir2 was either overexpressed or knocked down in APP flies. Finally, we showed that Aβ aggregates in APP flies were reduced by RES and dSir2, probably via inhibiting Drosophila β-secretase (dBACE). Our data suggest that RES rescues the APP-induced behavioral deficits and Aβ burden largely, but not exclusively, via dSir2.
Animals
;
Alzheimer Disease/metabolism*
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor/metabolism*
;
Drosophila/physiology*
;
Drosophila Proteins/metabolism*
;
Resveratrol/pharmacology*
;
Sirtuin 1
;
Sleep
9.Heterologous production of bioactive xenoacremone analogs in Aspergillus nidulans.
Zhiguo LIU ; Wei LI ; Peng ZHANG ; Yi SUN ; Wen-Bing YIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):436-442
Tyrosine-decahydrofluorene derivatives are a class of hybrid compounds that integrate the properties of polyketides and nonribosomal peptides. These compounds feature a [6.5.6] tricarbocyclic core and a para-cyclophane ether moiety in their structures and exhibit anti-tumor and anti-microbial activities. In this study, we constructed the biosynthetic pathway of xenoacremones from Xenoacremonium sinensis ML-31 in the Aspergillus nidulans host, resulting in the identification of four novel tyrosine-decahydrofluorene analogs, xenoacremones I-L (1-4), along with two known analogs, xenoacremones A and B. Remarkably, compounds 3 and 4 contained a 12-membered para-cyclophane ring system, which is unprecedented among tyrosine-decahydrofluorene analogs in X. sinensis. The successful reconstruction of the biosynthetic pathway and the discovery of novel analogs demonstrate the utility of heterologous expression strategy for the generation of structurally diverse natural products with potential biological activities.
Aspergillus nidulans/metabolism*
;
Biological Products/metabolism*
;
Polyketides/metabolism*
;
Peptides/metabolism*
;
Biosynthetic Pathways
;
Multigene Family
10.Research progress of the regulation of orphan nuclear receptors on chronic liver diseases.
Zhi-Hui YANG ; Jia-Hui WANG ; Lei WANG ; Xue-Lin DUAN ; Hong-Hong WANG ; Yue PENG ; Tie-Jian ZHAO ; Yang ZHENG
Acta Physiologica Sinica 2023;75(4):555-568
The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.
Humans
;
Orphan Nuclear Receptors/metabolism*
;
Receptors, Steroid/physiology*
;
Ligands
;
Liver
;
Liver Diseases
;
Intercellular Signaling Peptides and Proteins

Result Analysis
Print
Save
E-mail