1.Exogenous spexin aggravates renal ischemia reperfusion injury and triggers toxicity in healthy kidneys.
Kadri KULUALP ; Meltem Kumaş KULUALP ; Zeynep SEMEN ; Gökçen Güvenç BAYRAM ; Aslı ÇELIK ; Melek Yeşim AK ; Osman YILMAZ
Frontiers of Medicine 2025;19(5):842-854
Renal ischemia-reperfusion injury (IRI) is a major contributor to acute kidney injury (AKI), leading to substantial morbidity and mortality. Spexin (SPX), a 14-amino acid endogenous peptide involved in metabolic regulation and immune modulation, has not yet been studied in the context of chronic treatment and renal IRI. This study evaluated the effects of exogenous SPX on renal function, histopathological changes, and molecular pathways in both IRI-induced injured and healthy kidneys. Twenty-eight male BALB/c mice were divided into four groups: control, SPX, IRI, and SPX+IRI. IRI was induced by 30 minutes of bilateral renal ischemia followed by 6 hours of reperfusion. Renal injury markers, histopathological changes, inflammatory mediators, apoptotic markers, and fibrosis-related proteins were analyzed. SPX significantly exacerbated IRI-induced kidney injury by activating the Wnt/β-catenin signaling pathway and promoting the upregulation of pro-inflammatory, pro-apoptotic, and pro-fibrotic mediators. It is noteworthy that SPX exerted more severe deleterious nephrotoxic effects in the healthy kidney compared to those observed in the IRI-induced injured kidney. These findings indicate that chronic treatment with SPX administration may have intrinsic pro-inflammatory, pro-apoptotic and fibrotic properties, raising concerns about its therapeutic potential. Further research is needed to clarify its physiological role and therapeutic implications in kidney diseases.
Animals
;
Reperfusion Injury/chemically induced*
;
Male
;
Mice, Inbred BALB C
;
Mice
;
Acute Kidney Injury/metabolism*
;
Kidney/blood supply*
;
Peptide Hormones/adverse effects*
;
Apoptosis/drug effects*
;
Wnt Signaling Pathway/drug effects*
;
Disease Models, Animal
2.Marked Suppression of Ghrelin Concentration by Insulin in Prader-Willi Syndrome.
Kyung Hoon PAIK ; Moon Kyu LEE ; Dong Kyu JIN ; Hahn Wook KANG ; Kyung Han LEE ; An Hee KIM ; Cheol KIM ; Ji Eun LEE ; Yoo Joung OH ; Seonwoo KIM ; Sun Joo HAN ; Eun Kyung KWON ; Yon Ho CHOE
Journal of Korean Medical Science 2007;22(2):177-182
The plasma ghrelin has been reported to be elevated in Prader-Willi syndrome (PWS) and modulated by insulin. It was hypothesized that insulin might have a more pronounced effect on reducing plasma ghrelin in PWS patients, which would influence appetite. This study investigated the degree of ghrelin suppression using an euglycemic hyperinsulinemic clamp in children with PWS (n=6) and normal children (n=6). After a 90-min infusion of insulin, the plasma ghrelin level decreased from a basal value of 0.86+/-0.15 to 0.58+/-0.12 ng/mL in the controls, and from 2.38+/-0.76 to 1.12+/-0.29 ng/mL in children with PWS (p=0.011). The area under the curve below the baseline level over the 90 min insulin infusion was larger in children with PWS than in controls (-92.82+/-44.4 vs. -10.41+/-2.87 ng/mL/90 min) (p=0.011). The insulin sensitivity measured as the glucose infusion rate at steady state was similar in the two groups (p=0.088). The decrease in the ghrelin levels in response to insulin was more pronounced in the children with PWS than in the controls. However, the level of ghrelin was always higher in the children with PWS during the clamp study. This suggests that even though insulin sensitivity to ghrelin is well maintained, an increase in the baseline ghrelin levels is characteristic of PWS.
Prader-Willi Syndrome/*blood
;
Peptide Hormones/*blood/*drug effects
;
Metabolic Clearance Rate/drug effects
;
Male
;
Insulin/*administration & dosage/blood
;
Infusions, Intravenous
;
Humans
;
Female
;
Down-Regulation/drug effects
;
Child
;
Adolescent

Result Analysis
Print
Save
E-mail