1.Patient-reported health status vs . N-terminal pro-B-type natriuretic peptide levels in patients with acute heart failure.
Jingkuo LI ; Lubi LEI ; Wei WANG ; Yan LI ; Yanwu YU ; Boxuan PU ; Yue PENG ; Xiqian HUO ; Lihua ZHANG
Chinese Medical Journal 2025;138(22):2955-2962
BACKGROUND:
Changes in N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels may not fully translate into patient-reported health status in patients with heart failure (HF). We aimed to evaluate the correlation between NT-proBNP levels and patient-reported health status changes at one month after discharge of patients, and their associations with risk of death and rehospitalization in patients with acute HF.
METHODS:
We used data from the China Patient-centered Evaluative Assessment of Cardiac Events Prospective Heart Failure Study (PEACE 5p-HF Study). Patient-reported health status was measured by the 12-item Kansas City Cardiomyopathy Questionnaire (KCCQ-12). Patients who were hospitalized for HF and completed the KCCQ-12 and NT-proBNP tests before and one month after discharge were eligible in our study. We stratified patients into different groups based on NT-proBNP levels (i.e., improved, stable, and deteriorated) and KCCQ-12 scores (i.e., not deteriorated and deteriorated). We also examined the associations of the joint NT-proBNP and KCCQ-12 change with the risk of one-year and four-year clinical outcomes.
RESULTS:
A total of 2461 patients were included in the analysis. The mean age was 64.06 ± 13.51 years, and 36.37% (895/2461) of the study population were female. Among patients with improved NT-proBNP levels, 115 (10.95%) patients had deteriorated KCCQ-12 scores. The correlation between the change in the KCCQ-12 score and NT-proBNP level was weak ( r2 = 0.002, P = 0.013). Stratification by changes in the KCCQ-12 score revealed subgroups with distinctive risks, such that patients with deteriorated KCCQ-12 scores in any of the NT-proBNP change groups exhibited an increased risk of one-year all-cause death than participants with not deteriorated KCCQ-12 scores in any of the NT-proBNP change groups. Patients with improved NT-proBNP levels and deteriorated KCCQ-12 scores presented greater risks of one-year all-cause death (hazard ratio [HR]: 2.45, 95% confidence interval [CI]: 1.34-4.48) than patients with stable NT-proBNP levels and not deteriorated KCCQ-12 scores (HR [95% CI], 1.77 [1.25-2.53]).
CONCLUSIONS:
A discrepancy between changes in NT-proBNP levels and KCCQ-12 scores was common. The change in NT-proBNP levels was not sufficient to characterize critical aspects related to HF during one month after discharge of patients. Changes in the KCCQ-12 score exhibit complementary information to NT-proBNP levels for the prediction of clinical outcomes in patients with acute HF.
REGISTRATION
www.clinicaltrials.gov (No. NCT02878811).
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Health Status
;
Heart Failure/metabolism*
;
Natriuretic Peptide, Brain/metabolism*
;
Peptide Fragments/metabolism*
;
Prospective Studies
2.Steroid sulfatase inhibitor DU-14 prevents amyloid β-protein-induced depressive-like behavior and theta rhythm suppression in rats.
Xing-Hua YUE ; Zhao-Jun WANG ; Mei-Na WU ; Hong-Yan CAI ; Jun ZHANG
Acta Physiologica Sinica 2025;77(5):801-810
The hippocampus, a major component of the limbic system, is the most important region related to emotion regulation and memory processing. Cognitive impairment and depressive symptoms observed in Alzheimer's disease (AD) patients may be attributed to hippocampal damage caused by amyloid β-protein (Aβ). Our previous studies have demonstrated that a steroid sulfatase inhibitor DU-14 can enhance hippocampal synaptic plasticity and spatial memory abilities in a chronic AD murine model by counteracting the toxic effects of Aβ. However, limited experimental evidence exists regarding the efficacy of steroid sulfatase inhibitor on depressive symptoms in AD animal models. In this study, we investigated the effects of DU-14 on depressive symptoms and theta-band neuronal oscillations in rats with intrahippocampal injection of Aβ1-42 using various behavioral tests such as sucrose preference test, tail suspension test, forced swimming test, and in vivo hippocampal local field potential (LFP) recording. The results demonstrated that, in comparison to the control group: (1) rats in the Aβ group exhibited a decrease in sucrose preference, indicating a loss of interest in pleasurable activities; (2) rats in the Aβ group displayed aggravated depressive-like behavior characterized by prolonged immobility time during tail suspension and forced swimming tests; (3) Aβ disrupted the induction of theta rhythm via tail pinch stimulation, and resulted in a significant reduction in peak power of theta rhythm. In contrast to the Aβ group, pretreatment with DU-14 resulted in: (1) a significant improvement in Aβ-induced anhedonia, as evidenced by increased sucrose preference; (2) significant alleviation of Aβ-induced despair and depressive-like behaviors, reflected by reduced immobility time during tail suspension and forced swimming tests; (3) successful mitigation of Aβ-mediated inhibition on bilateral hippocampal theta rhythm. These findings indicate that steroid sulfatase inhibitor DU-14 can counteract neurotoxicity induced by Aβ, and prevent Aβ-induced depressive-like behavior and suppression of theta rhythm.
Animals
;
Amyloid beta-Peptides/toxicity*
;
Rats
;
Depression/physiopathology*
;
Theta Rhythm/drug effects*
;
Hippocampus/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Alzheimer Disease/physiopathology*
;
Steryl-Sulfatase/antagonists & inhibitors*
;
Peptide Fragments
;
Behavior, Animal/drug effects*
3.Kaixin San-medicated serum attenuates Aβ_(25-35)-induced injury in SH-SY5Y cells by regulating autophagy.
Han-Wen XING ; Yi YANG ; Yan-Ping YIN ; Lan XIE ; Fang FANG
China Journal of Chinese Materia Medica 2025;50(2):313-321
The aim of this study is to investigate the regulation of Kaixin San-medicated serum(KXS-MS) on autophagy induced by Aβ_(25-35) in SH-SY5Y cells. The SH-SY5Y cell model of Aβ_(25-35)(25 μmol·L~(-1))-induced injury was established, and different concentrations of KXS-MS were added into the culture media of cells, which were then incubated for 24 h. Cell viability was measured by the methyl thiazolyl tetrazolium(MTT) assay. The protein levels of microtubule-associated protein 1 light chain 3(LC3)Ⅰ, LC3Ⅱ, protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR were assessed by Western blot. Furthermore, the combination of rapamycin(Rapa)/3-methyladenine(3-MA) and low concentration of KXS-MS was added to the culture medium of SH-SY5Y cells injured by Aβ_(25-35), and the cell viability and the expression levels of the above proteins were determined. The results showed that Aβ_(25-35) decreased the cell viability, up-regulated the expression levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ, and down-regulated the expression levels of p-Akt, p-mTOR, p-Akt/Akt, and p-mTOR/mTOR. Compared with the Aβ_(25-35) model group, KXS-MS treatment attenuated Aβ_(25-35)-induced injury and enhanced the survival of SH-SY5Y cells. Meanwhile, KXS-MS down-regulated the LC3Ⅱ/LC3Ⅰ level and up-regulated the p-Akt/Akt and p-mTOR/mTOR levels. Compared with the low-concentration KXS-MS group, Rapa did not affect the cell survival and the levels of p-Akt and p-Akt/Akt, while it up-regulated the levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ and down-regulated the levels of p-mTOR and p-mTOR/mTOR. 3-MA significantly reduced the cell survival rate and p-Akt, p-Akt/Akt level in the KXS-MS group, while it had no significant effect on the levels of LC3Ⅱ, LC3Ⅱ/LC3Ⅰ, p-mTOR, and p-mTOR/mTOR. The above results indicate that KXS-MS exhibits protective effects against Aβ_(25-35)-induced damage in SH-SY5Y cells by up-regulating Akt/mTOR activity to inhibit autophagy.
Humans
;
Autophagy/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Amyloid beta-Peptides/toxicity*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
;
Peptide Fragments/toxicity*
;
Microtubule-Associated Proteins/genetics*
4.Construction of a human anti-SARS-CoV-2 scFv library and identification of broad-spectrum neutralizing antibodies.
Huimin YIN ; Hai LYU ; Ying CHI ; Jingxian LIU ; Yongjun JIAO ; Pingmin WEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):154-160
Objective To construct a library of human-derived anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) single-chain variable fragments (scFv) and screen for broad-spectrum neutralizing antibodies to identify candidate molecules for the development of diagnostic and therapeutic agents. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from the peripheral blood of patients who had recovered from novel coronavirus infection. Total RNA was extracted from these PBMCs and reverse transcribed into cDNA, which was used as a template for constructing a human anti-SARS-CoV-2 scFv library. Phage display technology was used to screen for scFv antibodies specific to the SARS-CoV-2 S protein. Full-length IgG antibodies were synthesized through sequence analysis and human IgG expression, and their binding capacity and neutralizing activity against SARS-CoV-2 were evaluated. Results A human-derived scFv antibody library against SARS-CoV-2 with a capacity of 1.56×107 CFU was successfully constructed. Two specific scFv antibodies were screened from this library and expressed as full-length IgG antibodies (IgG-A10 and IgG-G6). IgG-A10 exhibited strong neutralizing activity against both the original SARS-CoV-2 strain (WT) and the XBB subvariant of the Omicron variant. However, the neutralizing activity of this antibody against the JN.1 sub lineage of the Omicron BA.2.86 variant was moderate. Conclusion This study has successfully constructed a human anti-SARS-CoV-2 scFv antibody library from the peripheral blood of recovered patients, and screened and expressed anti-SARS-CoV-2 IgG antibodies with neutralizing activity, laying a foundation for the prevention, diagnosis, and treatment of SARS-CoV-2 infection.
Humans
;
Single-Chain Antibodies/genetics*
;
SARS-CoV-2/immunology*
;
COVID-19/immunology*
;
Immunoglobulin G/genetics*
;
Antibodies, Viral/genetics*
;
Peptide Library
;
Spike Glycoprotein, Coronavirus/immunology*
;
Antibodies, Neutralizing/immunology*
;
Leukocytes, Mononuclear/immunology*
;
Broadly Neutralizing Antibodies/immunology*
5.Construction of a camel-derived natural phage nanobody display library and screening of anti-CD22 nanobodies.
Wanjun HE ; Kai CUI ; Xiqian ZHANG ; Dan JIANG ; Guangxian XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):254-261
Objective To screen the anti-CD22-specific nanobodies to provide a basis for immunotherapy agents. Methods The naive phage nanobody library was constructed and its diversity was analyzed. Three rounds of biotinylated streptavidin liquid phase screening were performed by using biotinylated CD22 antigen as the target, and the sequence of nanobodies against CD22 were identified by ELISA and gene sequencing. Results The capacity of the constructed naive phage nanobody library was 3.89×109 CFU/mL, and the insertion of effective fragments was higher than 85%. Based on this library, seven anti-human CD22 nanobodies were screened, and the amino acid sequence comparison results showed that the overall similarity was 70.34%, and all of them were hydrophilic proteins. The results of protein-protein complex docking prediction showed that the mimetic proteins of the five nanobody sequences could be paired and linked to CD22, and the main forces were hydrophobic interaction and hydrogen bonding. Conclusion This study provided a basis for the study of chimeric antigen receptor T cells targeting CD22, successfully constructed the natural phage nanobody library and obtaining five anti-CD22-specific nanobodies.
Camelus/immunology*
;
Single-Domain Antibodies/chemistry*
;
Peptide Library
;
Humans
;
Animals
;
Sialic Acid Binding Ig-like Lectin 2/genetics*
;
Amino Acid Sequence
;
Molecular Docking Simulation
6.Berberine inhibits macrophage foam cell formation through activation of ACE2-Ang(1-7)-Mas signaling pathway.
Qin ZHANG ; Songhao HU ; Junxia YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):978-984
Objective This study aims to investigate the effect of berberine (Ber) on foam cell formation induced by oxidized low-density lipoprotein (ox-LDL) in macrophages and to explore the mechanism's association with the ACE2-Ang(1-7)-Mas axis. Methods They were randomly divided into blank group, model group (RAW264.7 cells induced with 60 μg/mL ox-LDL), and berberine group (the model treated with berberine interventions at 2.5, 5, and 10 μmol/L concentrations). Lipid accumulation within the cells was assessed by Oil Red O staining, and the content of lipid droplets in each group was quantitatively analyzed by enzymatic method. The content of total cholesterol (TC) and free cholesterol (FC) in foam cells were detected by enzymatic method. The levels of oxidative stress factors (malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH)), inflammatory factors such as tumor necrosis factor α(TNF-α), and nitric oxide (NO) were measured using corresponding relevant reagent kits. The mRNA and protein expressions of ACE2 and Mas were evaluated through quantitative real-time PCR and Western blot analysis, respectively. The levels of AngII and Ang(1-7) were detected by ELISA. Results Compared with the model group, the berberine groups exhibited reduced lipid droplet accumulation and a dose-dependent decrease in intracellular lipid content. Berberine significantly lowered TC and FC levels in foam cells and reduced the CE/TC ratio. The levels of the oxidative factor MDA were significantly reduced, while the levels of the antioxidant factors SOD and GSH were markedly increased. Inflammatory factors TNF-α and NO were significantly decreased. The expression of the ACE2-Ang(1-7)-Mas signaling pathway was significantly activated, and the effect was more pronounced in the Ber group with high-concentration compared to the group with low-concentration, demonstrating a dose-dependent response. Conclusion Berberine can inhibit macrophage foam cell formation, potentially through upregulation of the ACE2-Ang(1-7)-Mas signaling pathway, thereby contributing to the alleviation of atherosclerosis.
Berberine/pharmacology*
;
Foam Cells/cytology*
;
Animals
;
Signal Transduction/drug effects*
;
Mice
;
Angiotensin-Converting Enzyme 2
;
Angiotensin I/genetics*
;
Peptidyl-Dipeptidase A/genetics*
;
Peptide Fragments/genetics*
;
Receptors, G-Protein-Coupled/genetics*
;
RAW 264.7 Cells
;
Proto-Oncogene Proteins/genetics*
;
Proto-Oncogene Mas
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Role of Total Vitamin D, Total Procollagen Type I Amino-Terminal Propeptide and β-CrossLaps in Multiple Myeloma.
Mei-E WANG ; Ting SU ; Xi-Zhe GUO ; Rong-Fu HUANG ; Yu-Yu ZHENG ; Gen-Wang CHEN ; Chun-Mei FAN
Journal of Experimental Hematology 2025;33(1):163-167
OBJECTIVE:
To analyze the significance of total vitamin D (tVD), total procollagen type I amino-terminal propeptide (tPINP) and β-CrossLaps (β-CTx) in the staging and prognosis of patients with multiple myeloma (MM).
METHODS:
A total of 54 patients with newly diagnosed MM admitted to the Second Affiliated Hospital of Fujian Medical University from 2020 to 2022 were selected as the observation group (MM group), and 50 healthy persons who underwent physical examinations in our hospital were selected as the control group. The expression levels of tVD, tPINP and β-CTx in the two groups were detected by chemiluminescence method. The differences in the expression levels of tVD, tPINP and β-CTx among MM patients at different ISS stages were analyzed. The expression levels of tVD, tPINP and β-CTx in MM patients with different levels of hemoglobin (Hb), serum calcium (Ca), creatinine (Crea), albumin (ALB), β2-microglobulin (β2-MG) and lactate dehydrogenase (LDH) were compared. The correlations between the expression levels of tVD, tPINP, β-CTx and the aforementioned clinical parameters were analyzed, respectively. The relationship between the expression levels of tVD, tPINP, β-CTx and the progression-free survival (PFS) of MM patients was analyzed.
RESULTS:
The expression level of tVD in the MM group was significantly lower than that in the control group (21.73±14.45 ng/ml vs 30.78±9.94 ng/ml, P =0.022). The expression level of β-CTx in the MM group was significantly higher than that in the control group (1.43±0.99 ng/ml vs 0.53±0.29 ng/ml, P =0.013). The tVD level in MM patients with ISS stage I-II was significantly higher than that of MM patients with ISS stage III (29.50±14.59 ng/ml vs 12.62±7.73 ng/ml, P =0.028), indicating that the higher the ISS stage, the lower the tVD level. The tPINP and β-CTx levels in MM patients with high Ca levels (>2.65 mmol/L) were significantly higher than those in patients with low Ca levels (≤2.65 mmol/L) (P =0.016, P =0.021). The tVD level of MM patients was positively correlated with the ALB level (r =0.570), tPINP was positively correlated with Ca and β2-MG levels (r =0.791,r =0.673), and β-CTx was positively correlated with tPINP level (r =0.616). The PFS of the low tVD expression group was significantly lower than that of the high tVD expression group (P =0.041).
CONCLUSION
The expression level of tVD is decreased in MM patients, which can be used as an indicator to evaluate the disease stage and prognosis of the patients. The β-CTx expression level is increased in MM patients. tPINP and β-CTx may be correlated with clinical symptoms such as osteolytic lesions and renal function changes in MM patients.
Humans
;
Multiple Myeloma/pathology*
;
Procollagen/blood*
;
Vitamin D/blood*
;
Prognosis
;
Peptide Fragments/blood*
;
Collagen Type I/blood*
;
Female
;
Male
;
Middle Aged
;
Aged
;
Neoplasm Staging
8.Changes in circulating levels of calcium and bone metabolism biochemical markers in patients receiving denosumab treatment.
Yuancheng CHEN ; Wen WU ; Ling XU ; Haiou DENG ; Ruixue WANG ; Qianwen HUANG ; Liping XUAN ; Xueying CHEN ; Ximei ZHI
Journal of Southern Medical University 2025;45(4):760-764
OBJECTIVES:
To investigate the changes in blood levels of calcium and bone metabolism biochemical markers in patients with primary osteoporosis receiving treatment with denosumab.
METHODS:
Seventy-three patients with primary osteoporosis treated in our Department between December, 2021 and December 2023 were enrolled. All the patients were treated with calcium supplements, vitamin D and calcitriol in addition to regular denosumab treatment every 6 months. Blood calcium, parathyroid hormone (PTH), osteocalcin (OC), type I procollagen amino-terminal propeptide (PINP), and type I collagen carboxy-terminal telopeptide β special sequence (β‑CTX) data before and at 3, 6, 9, and 12 months after the first treatment were collected from each patient.
RESULTS:
Three months after the first denosumab treatment, the bone turnover markers (BTMs) OC, PINP, and β-CTX were significantly decreased compared to their baseline levels by 39.5% (P<0.001), 56.2% (P<0.001), and 81.8% (P<0.001), respectively. At 6, 9, and 12 months of treatment, OC, PINP, and β-CTX remained significantly lower than their baseline levels (P<0.001). Blood calcium level was decreased (P<0.05) and PTH level increased (P<0.05) significantly in these patients at months of denosumab treatment, but their levels were comparable to the baseline levels at 6, 9, and 12 months of the treatment (P>0.05).
CONCLUSIONS
Denosumab can suppress BTMs and has a good therapeutic effect in patients with primary osteoporosis, but reduction of blood calcium and elevation of PTH levels can occur during the first 3 months in spite of calcium supplementation. Blood calcium and PTH levels can recover the baseline levels as the treatment extended, suggesting the importance of monitoring blood calcium and PTH levels during denosumab treatment.
Humans
;
Denosumab/therapeutic use*
;
Calcium/blood*
;
Parathyroid Hormone/blood*
;
Biomarkers/blood*
;
Osteoporosis/blood*
;
Osteocalcin/blood*
;
Procollagen/blood*
;
Female
;
Collagen Type I/blood*
;
Peptide Fragments/blood*
;
Bone Density Conservation Agents/therapeutic use*
;
Bone and Bones/metabolism*
;
Male
;
Middle Aged
;
Vitamin D
;
Peptides/blood*
;
Aged
9.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
10.Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2.
Kai WANG ; Duanfang CAO ; Lanlan LIU ; Xiaoyi FAN ; Yihuan LIN ; Wenting HE ; Yunze ZHAI ; Pingyong XU ; Xiyun YAN ; Haikun WANG ; Xinzheng ZHANG ; Pengyuan YANG
Frontiers of Medicine 2025;19(3):493-506
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
Single-Domain Antibodies/immunology*
;
Spike Glycoprotein, Coronavirus/metabolism*
;
SARS-CoV-2/immunology*
;
Animals
;
Humans
;
Antibodies, Neutralizing/immunology*
;
Camelus
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Angiotensin-Converting Enzyme 2

Result Analysis
Print
Save
E-mail