1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
3.Original plants, production areas, and spread of Sanqi: based on historical materials of the Ming and Qing Dynasties.
Mei WANG ; Min-Zhen YIN ; Hua-Sheng PENG
China Journal of Chinese Materia Medica 2025;50(11):2938-2944
Sanqi is first recorded in the Compendium of Materia Medica(Ben Cao Gang Mu) in the Ming Dynasty. During the Ming and Qing Dynasties, Sanqi, as a precious Dao-di herb, was successively spread and introduced for cultivation. This study verified the germplasm resources, production areas, and spread of Sanqi in the Ming and Qing Dynasties by systematically reviewing the historical materials, such as materia medica works and local chronicles, and the modern distribution of production areas. In the Ming and Qing Dynasties, the original plants of Sanqi included Panax notoginseng, P. japonicus, P. bipinnatifidus, P. zingiberensis, P. stipuleanatus, and Gynura japonica. Among them, the production area of P. notoginseng has changed. From 1578 to 1593, the main production areas of P. notoginseng were Nandan county, Hechi city in Guangxi Zhuang autonomous region and Guangnan county and Funing county, Wenshan prefecture in Yunnan province. From 1683 to 1755, the production areas of P. notoginseng additionally included Yizhou district, Tian'e county, and Huanjiang county in Hechi city, and Tianyang district and Tiandong county in Baise city, Xincheng county and Gongcheng county in Guangxi Zhuang autonomous region. From 1765 to 1892, the production areas additionally included Youjiang district, Debao county, Napo county, and Jingxi city in Baise city, and Tiandeng county in Guangxi Zhuang autonomous region, and Wenshan city, Malipo county, Yanshan county, Xichou county, and Maguan county in Wenshan prefecture, and Baoshan city, Dali prefecture, Lincang city, Honghe prefecture, Mangshi city, and Lushui city in Yunnan province. During the Wanli period of the Ming Dynasty, Sanqi was introduced to Zhejiang province. During the Qianlong period of the Qing Dynasty, it was introduced to Fujian province. During the Daoguang period of the Qing Dynasty, it was introduced to Hunan province. By comprehensively reviewing the materia medica works, local chronicles, and novel historical materials, this study restores the development history of the Sanqi industry in the Ming and Qing Dynasties. Historical data show that the introduction of Dao-di herbs should consider the biological characteristics of medicinal plants and avoid blind introduction.
China
;
Drugs, Chinese Herbal/history*
;
History, 17th Century
;
History, 16th Century
;
Plants, Medicinal/chemistry*
;
Medicine, Chinese Traditional/history*
;
History, 18th Century
4.Frontier technologies and development trends of network pharmacology: a patent bibliometric analysis.
Li TAO ; Zhi-Peng KE ; Tuan-Jie WANG ; Zhen-Zhong WANG ; Liang CAO ; Wei XIAO
China Journal of Chinese Materia Medica 2025;50(11):3070-3078
This study systematically analyzed the global research landscape, technological composition, and core patents in the field of networks target and network pharmacology, and proposes further suggestions based on the IncoPat patent citation database and VOSviewer bibliometric network visualization tool. Using patent literature metrics and scientific knowledge mapping method, technological innovation pathways, research hotspots, and future directions in this field were further revealed. In particular, this field is moving towards data-driven, intelligent, and systematic approaches. Patent analysis indicated that most patent applications in this domain focused on traditional Chinese medicine(TCM), which have provided key engineering technical approaches to explore and solve complex problems of TCM. By integrating big data and artificial intelligence technologies, network targets and network pharmacology have conferred high-precision screening and quality control of key components and targets in herbal formulations and prescriptions, accelerating the clinical translation and industrialization of TCM-based new drugs and health products with medicine-food homology. Therefore, it is essential to optimize the patent protection system and establish integrated technology platforms in this field for ensuring the competitiveness of technological achievements in research and clinical application. These efforts will advance the widespread application and high-quality development of TCM modernization, precision medicine, and innovative drug discovery.
Bibliometrics
;
Patents as Topic
;
Humans
;
Medicine, Chinese Traditional
;
Network Pharmacology/trends*
;
Drugs, Chinese Herbal/pharmacology*
5."Kidney deficiency-vessel impairment" as core pathogenesis of panvascular diseases: theoretical and clinical perspectives.
Jie WANG ; Jun HU ; Jun LI ; Zhen-Peng ZHANG ; Chao LIU ; Cong CHEN
China Journal of Chinese Materia Medica 2025;50(13):3513-3521
Panvascular disease is a complex systemic disorder. Research by our team has established "kidney deficiency-vascular impairment" as its core pathogenesis. Consequently, we developed a three-tiered progressive prevention and treatment strategy: early prevention phase: focuses on tonifying the kidney and reducing turbidity; mid-term control phase: focuses on tonifying the kidney and stabilizing plaque; late recovery phase: focuses on tonifying the kidney and unblocking collaterals. This targeted therapeutic protocol effectively alleviates clinical symptoms, improves biochemical markers, enhances treatment efficacy, and achieves comprehensive management throughout the disease course. This article systematically elaborates on the concept of "kidney deficiency-vascular impairment" in panvascular disease, summarizes the mechanisms of kidney-tonifying Chinese herbal medicines, aiming to provide a beneficial reference for the whole-course management of panvascular diseases.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Kidney/blood supply*
;
Vascular Diseases/physiopathology*
;
Animals
;
Kidney Diseases/physiopathology*
6.Prognosis of bronchopulmonary dysplasia.
Ying-Zhen ZHOU ; Ting WANG ; Xing-Meng FU ; Bing-Ming PENG ; Zhou FU
Chinese Journal of Contemporary Pediatrics 2025;27(1):115-120
Children with bronchopulmonary dysplasia (BPD) often exhibit severe respiratory problems and significant pulmonary dysfunction during school age and adulthood. Exercise tests show a decline in cardiopulmonary function and physical performance in children with BPD, who also have a higher incidence of pulmonary hypertension. These children generally perform poorly in terms of intelligence, language, and motor development. As they age, the risk of neurodevelopmental disorders increases, and health-related quality of life is also affected. This article reviews the prognosis of the respiratory system, physical capacity, cardiovascular system, nervous system, and health-related quality of life in children with BPD, aiming to improve the management of these patients and enhance their subsequent quality of life.
Humans
;
Bronchopulmonary Dysplasia/complications*
;
Prognosis
;
Quality of Life
;
Child
7.Predictive efficacy of serum hepcidin, ferritin, and q-Dioxn MRI for upgrading, upstaging, and biochemical recurrence in prostate cancer patients: A comparative study.
Zhen TIAN ; Guang-Zheng LI ; Ren-Peng HUANG ; Si-Yu WANG ; Li-Chen JIN ; Yu-Xin LIN ; Yu-Hua HUANG
National Journal of Andrology 2025;31(9):800-806
OBJECTIVE:
The aim of this study is to explore the correlation among serum hepcidin, ferritin, and q-Dioxn MRI with upgrading, upstaging and biochemical recurrence in prostate cancer (PCa) patients.
METHODS:
A total of 103 PCa patients diagnosed by biopsy were selected for this study. All patients underwent q-Dixon MRI prior to biopsy for T2* value measurement. Then serum hepcidin and ferritin were measured before receiving radical prostatectomy. Pathological grading and staging were conducted both preoperatively and postoperatively. The correlations among hepcidin, ferritin, T2* values, and postoperative upgrading, upstaging, biochemical recurrence were subsequently analyzed.
RESULTS:
The hepcidin level of PCa patients was measured at (123.51 ± 23.03) ng/mL, while the ferritin level was recorded at (239.80 ± 79.59) ng/mL, and the T2* value was (41.07 ± 6.37) ms. A total of 49 and 36 cases were observed with upgrading and upstaging in postoperative pathology, respectively. The median follow-up duration was 28.0 months (6.0-38.0 months), during which biochemical recurrence was observed in 12 cases. For upgrading, hepcidin and ferritin demonstrated the predictive efficacy, with areas under the ROC curve of 0.777 and 0.642, respectively, whereas T2* values did not show sufficient predictive power. For upstaging, hepcidin, ferritin, and T2* exhibited predictive efficacy, with areas under the ROC curve of 0.806, 0.696, and 0.655, respectively. Multivariate Logistic regression analysis indicated that hepcidin served as an independent risk factor for both upgrading (OR 1.055, 95%CI 1.027-1.085, P<0.001) and upstaging (OR 1.094, 95%CI 1.040-1.152, P<0.001). Cox regression analysis showed that hepcidin (95%CI 1.000-1.052, P = 0.049) was a significant risk factor for predicting biochemical recurrence.
CONCLUSION
Hepcidin could serve as a predictor for pathological upgrading, upstaging and biochemical recurrence after radical prostatectomy, which provides a novel potential index for risk stratification and prognostic evaluation of PCa patients.
Humans
;
Male
;
Prostatic Neoplasms/diagnosis*
;
Hepcidins/blood*
;
Ferritins/blood*
;
Middle Aged
;
Magnetic Resonance Imaging/methods*
;
Aged
;
Neoplasm Recurrence, Local
;
Neoplasm Staging
8.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
9.NFKBIE: Novel Biomarkers for Diagnosis, Prognosis, and Immunity in Colorectal Cancer: Insights from Pan-cancer Analysis.
Chen Yang HOU ; Peng WANG ; Feng Xu YAN ; Yan Yan BO ; Zhen Peng ZHU ; Xi Ran WANG ; Shan LIU ; Dan Dan XU ; Jia Jia XIAO ; Jun XUE ; Fei GUO ; Qing Xue MENG ; Ren Sen RAN ; Wei Zheng LIANG
Biomedical and Environmental Sciences 2025;38(10):1320-1325
10.The antitumor activity and mechanisms of piperlongumine derivative C12 on human non-small cell lung cancer H1299 cells
Hai-tao LONG ; Xue LEI ; Jia-yi CHEN ; Jiao MENG ; Li-hui SHAO ; Zhu-rui LI ; Dan-ping CHEN ; Zhen-chao WANG ; Yue ZHOU ; Cheng-peng LI
Acta Pharmaceutica Sinica 2024;59(10):2773-2781
The compound (

Result Analysis
Print
Save
E-mail