1.Dynamics of eosinophil infiltration and microglia activation in brain tissues of mice infected with Angiostrongylus cantonensis
Fanna WEI ; Renjie ZHANG ; Yahong HU ; Xiaoyu QIN ; Yunhai GUO ; Xiaojin MO ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Jiatian GUO ; Peng SONG ; Yanhong CHU ; Bin XU ; Ting ZHANG ; Yuchun CAI ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2025;37(2):163-175
Objective To investigate the changes in eosinophil counts and the activation of microglial cells in the brain tissues of mice at different stages of Angiostrongylus cantonensis infection, and to examine the role of microglia in regulating the progression of angiostrongyliasis and unravel the possible molecular mechanisms. Methods Fifty BALB/c mice were randomly divided into the control group and the 7-d, 14-d, 21-day and 25-d infection groups, of 10 mice in each group. All mice in infection groups were infected with 30 stage III A. cantonensis larvae by gavage, and animals in the control group was given an equal amount of physiological saline. Five mice were collected from each of infection groups on days 7, 14, 21 d and 25 d post-infection, and 5 mice were collected from the control group on the day of oral gavage. The general and focal functional impairment was scored using the Clark scoring method to assess the degree of mouse neurological impairment. Five mice from each of infection groups were sacrificed on days 7, 14, 21 d and 25 d post-infection, and 5 mice from the control group were sacrificed on the day of oral gavage. Mouse brain tissues were sampled, and the pathological changes of brain tissues were dynamically observed using hematoxylin and eosin (HE) staining. Immunofluorescence staining with eosinophilic cationic protein (ECP) and ionized calcium binding adaptor molecule 1 (Iba1) was used to assess the degree of eosinophil infiltration and the counts of microglial cells in mouse brain tissues in each group, and the morphological parameters of microglial cells (skeleton analysis and fractal analysis) were quantified by using Image J software to determine the morphological changes of microglial cells. In addition, the expression of M1 microglia markers Fcγ receptor III (Fcgr3), Fcγ receptor IIb (Fcgr2b) and CD86 antigen (Cd86), M2 microglia markers Arginase 1 (Arg1), macrophage mannose receptor C-type 1 (Mrc1), chitinase-like 3 (Chil3), and phagocytosis genes myeloid cell triggering receptor expressed on myeloid cells 2 (Trem2), CD68 antigen (Cd68), and apolipoprotein E (Apoe) was quantified using real-time quantitative reverse transcription PCR (RT-qPCR) assay in the mouse cerebral cortex of mice post-infection. Results A large number of A. cantonensis larvae were seen on the mouse meninges surface post-infection, and many neuronal nuclei were crumpled and deeply stained, with a large number of bleeding points in the meninges. The median Clark scores of mouse general functional impairment were 0 (interquartile range, 0), 0 (interquartile range, 0.5), 6 (interquartile range, 1.0), 14 (interquartile range, 8.5) points and 20 (interquartile range, 9.0) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.45, P < 0.01), and the median Clark scores of mouse focal functional impairment were 0 (interquartile range, 0), 2 (interquartile range, 2.5), 7 (interquartile range, 3.0), 18 (interquartile range, 5.0) points and 25 (interquartile range, 6.5) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.72, P < 0.01). The mean scores of mice general and focal functional impairment were all higher in the infection groups than in the control group (all P values < 0.05). Immunofluorescence staining showed a significant difference in the eosinophil counts in mouse brain tissues among the five groups (F = 40.05, P < 0.000 1), and the eosinophil counts were significantly higher in mouse brain tissues in the 14-d (3.08 ± 0.78) and 21-d infection groups (5.97 ± 1.37) than in the control group (1.00 ± 0.28) (both P values < 0.05). Semi-quantitative analysis of microglia immunofluorescence showed a significant difference in the counts of microglial cells among the five groups (F = 17.66, P < 0.000 1), and higher Iba1 levels were detected in mouse brain tissues in 14-d (5.75 ± 1.28), 21-d (6.23 ± 1.89) and 25-d infection groups (3.70 ± 1.30) than in the control group (1.00 ± 0.30) (all P values < 0.05). Skeleton and fractal analyses showed that the branch length [(162.04 ± 34.10) μm vs. (395.37 ± 64.11) μm; t = 5.566, P < 0.05] and fractal dimension of microglial cells (1.30 ± 0.01 vs. 1.41 ± 0.03; t = 5.266, P < 0.05) were reduced in mouse brain tissues in the 21-d infection group relative to the control group. In addition, there were significant differences among the 5 groups in terms of M1 and M2 microglia markers Fcgr3 (F = 48.34, P < 0.05), Fcgr2b (F = 55.46, P < 0.05), Cd86 (F = 24.44, P < 0.05), Arg1 (F = 31.18, P < 0.05), Mrc1 (F = 15.42, P < 0.05) and Chil3 (F = 24.41, P < 0.05), as well as phagocytosis markers Trem2 (F = 21.19, P < 0.05), Cd68 (F = 43.95, P < 0.05) and Apoe (F = 7.12, P < 0.05) in mice brain tissues. Conclusions A. cantonensis infections may induce severe pathological injuries in mouse brain tissues that are characterized by massive eosinophil infiltration and persistent activation of microglia cells, thereby resulting in progressive deterioration of neurological functions.
2.Risk factors for cage retropulsion following transforaminal lumbar interbody fusion
Jintao XI ; Qilin LU ; Yang WANG ; Xiaojuan WANG ; Peng LYU ; Long CHEN ; Zhen SHI ; Wei XIE ; Yiliang ZHU ; Xugui LI
Chinese Journal of Tissue Engineering Research 2024;28(9):1394-1398
BACKGROUND:Previous literature reported that the fusion cage moved more than 2 mm from its original position,which means that the fusion cage moved backward.At present,clinical observation has found that the factors leading to the displacement of the fusion cage are complex,and the relationship between these factors and the cage retropulsion is not clear. OBJECTIVE:To explore the risk factors related to cage retropulsion after lumbar interbody fusion. METHODS:Retrospective analysis was conducted in 200 patients who underwent transforaminal lumbar interbody fusion surgery with a polyetheretherketone interbody fusion from February 2020 to February 2022.According to the distance from the posterior edge of the vertebral fusion cage to the posterior edge of the vertebral body after the operation(the second day after the removal of the drainage tube)and 1,3,6 and 12 months after the operation,patients were divided into cage retropulsion group(≥2 mm)and cage non-retropulsion group(<2 mm).The factors that may affect cage retropulsion,such as age,gender,body mass index,bone mineral density,operation time,bleeding,endplate injury,preoperative and postoperative interbody height,cage implantation depth,cage size,and segmental anterior convexity angle,were analyzed by univariate and logistic regression analysis. RESULTS AND CONCLUSION:(1)Posterior displacement of the fusion cage occurred in 15 cases(15/200).The differences in basic information such as age and body mass index between the two groups were not statistically significant.(2)The results of the univariate analysis were that gap height difference,time to wear a brace,segmental anterior convexity angle difference,bone mineral density,and age were related to posterior migration of the cage.(3)The results of logistic regression analysis were that cage size,endplate injury condition,and depth of cage implantation were risk factors for cage retropulsion.(4)These findings suggest that cage retropulsion after lumbar interbody fusion is caused by multiple factors,including segmental anterior convexity angle difference,bone mineral density,cage size,endplate damage,time to wear a brace,and depth of cage implantation.
3.Physicochemical Processes of Biofilm Formation on The Surface of Structures in Water
Kai SHEN ; Fei GAO ; Xu-Qiang HUANG ; Xiao-Peng LU ; Hui-Min ZHOU ; Wei-Rong LI ; Di TIE
Progress in Biochemistry and Biophysics 2024;51(1):145-157
Microorganisms can form biofilms, complex, heterogeneous, multicellular communities that adhere to surfaces. Biofilm formation on the surface of structures in water will accelerate structures’ corrosion, seriously affect their service efficiency and life, and significantly impact the growth of animals, plants, and human life. Hence, clarifying the mechanism of biofilm formation contributes to developing new strategies to control biofilm formation on surface and then reduce infections, biofouling, and contaminations. Biofilm-targeting strategies include the regulation of established biofilms or the modulation of single-cell attachment. In most studies, physicochemical mechanism is frequently applied to explain the initial bacterial adhesion phenomena but rarely to explain other stages of biofilm formation. This review presents a five-step comprehensive description of the physicochemical process from film formation to biofilm maturation: (1) period of film formation; (2) period of bacterial adhesion; (3) period of extracellular-polymeric-substances (EPSs) membrane formation; (4) period of regulating biofilm by quorum sensing (QS); (5) period of biofilm maturation. We first clarify how the film formed by compound molecules affects the surface’s physicochemical properties and initial adhesion, summarizing many factors that affect bacterial adhesion. We then review the types of EPSs and signal molecules secreted by bacteria after irreversible adhesion, as well as their role and QS mechanism in biofilm maturation. Finally, we discuss how bacteria or microcolonies separate from the mature biofilm by physicochemical action and summarize the morphology and adhesion characterization methods after the biofilm matures. This review redefines the role of physicochemical in the whole process of biofilm formation and provides a theoretical basis for the prevention, removal, and utilization of biofilm and other related research fields.
4.Research on Automatic Microalgae Detection System Based on Deep Learning
Rui-Jie XIANG ; Hao LIU ; Zhen LU ; Ze-Yu XIAO ; Hai-Peng LIU ; Yin-Chu WANG ; Xiao PENG ; Wei YAN
Progress in Biochemistry and Biophysics 2024;51(1):177-189
ObjectiveThe scale of microalgae farming industry is huge. During farming, it is easy for microalgae to be affected by miscellaneous bacteria and other contaminants. Because of that, periodic test is necessary to ensure the growth of microalgae. Present microscopy imaging and spectral analysis methods have higher requirements for experiment personnel, equipment and sites, for which it is unable to achieve real-time portable detection. For the purpose of real-time portable microalgae detection, a real-time microalgae detection system of low detection requirement and fast detection speed is needed. MethodsThis study has developed a microalgae detection system based on deep learning. A microscopy imaging device based on bright field was constructed. With imaged captured from the device, a neural network based on YOLOv3 was trained and deployed on microcomputer, thus realizing real-time portable microalgae detection. This study has also improved the feature extraction network by introducing cross-region residual connection and attention mechanism and replacing optimizer with Adam optimizer using multistage and multimethod strategy. ResultsWith cross-region residual connection, the mAP value reached 0.92. Compared with manual result, the detection error was 2.47%. ConclusionThe system could achieve real-time portable microalgae detection and provide relatively accurate detection result, so it can be applied to periodic test in microalgae farming.
5.Application of xenotransplantation in clinical practice
Shengkun SUN ; Shujun YANG ; Hao WEI ; Haihong YANG ; Jing LU ; Jiang PENG
Organ Transplantation 2024;15(2):200-206
Organ transplantation is the optimal treatment for end-stage organ failure. Nevertheless, organ shortage is a global problem, which limits further development of organ transplantation. Recent research shows that genetically modified pig may become a realistic alternative source of clinical organ transplantation donor. Xenotransplantation may serve as one of the effective measures to resolve the problem of organ shortage. Since 2021, 2 cases of living xenotransplantation and 6 cases of xenotransplantation in brain death recipients have been performed worldwide, and phase Ⅰ clinical trial of xenotransplantation has been launched, and the results have exceeded expectations. Therefore, in this article, recent clinical trial results of xenotransplantation in living and brain death recipients were retrospectively analyzed, and scientific, technical and ethical issues related to clinical research of xenotransplantation were illustrated, hoping to provide reference for clinical research of xenotransplantation in China and promote the development of xenotransplantation in clinical practice.
6.Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway.
Jun-Peng YAO ; Xiu-Mei FENG ; Lu WANG ; Yan-Qiu LI ; Zi-Yue ZHU ; Xiang-Yun YAN ; Yu-Qing YANG ; Ying LI ; Wei ZHANG
Chinese journal of integrative medicine 2024;30(3):251-259
OBJECTIVE:
To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.
METHODS:
Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.
RESULTS:
The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).
CONCLUSIONS
EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Electroacupuncture
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Facial Nerve Injuries/therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Beclin-1
;
Glial Cell Line-Derived Neurotrophic Factor
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Mammals/metabolism*
7.Icariin ameliorates viral myocarditis by inhibiting TLR4-mediated ferroptosis
Wei Luo ; Yi Lu ; Jun-Hua Deng ; Peng Liu ; Yan Huang ; Wan-Xi Liu ; Chun-Li Huang
Asian Pacific Journal of Tropical Biomedicine 2024;14(3):106-114
Objective: To explore the mechanism by which icariin alleviates viral myocarditis. Methods: CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on cell viability, inflammation, and apoptosis. Moreover, the effects of icariin on ferroptosis and TLR4 signaling were assessed. After AC16 cells were transfected with TLR4 overexpression plasmids, the role of TLR4 in mediating the regulatory effect of icariin in viral myocarditis was investigated. Results: Icariin significantly elevated cell viability and reduced inflammatory factors TNF-α, IL-1β, IL-6, and IL-18. Flow cytometry revealed that icariin decreased apoptosis rate, and the protein expression of Bax and cleaved caspase 3 and 9 in CVB3-induced cardiomyocytes. Additionally, it suppressed ferroptosis including lipid peroxidation and ferrous ion, as well as the TLR4 signaling. However, TLR4 overexpression abrogated the modulatory effects of icariin. Conclusions: Icariin mitigates CVB3-induced myocardial injury by inhibiting TLR4-mediated ferroptosis. Further animal study is needed to verify its efficacy.
8.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
9.Application of MRI-based image navigation and target selection in transcranial magnetic stimulation treatment
Li WANG ; Peng CHEN ; Xiuying WEI ; Yangjia LU ; Sijia LAI ; Kaihua WANG
Chinese Journal of Tissue Engineering Research 2024;28(26):4234-4241
BACKGROUND:In clinical application,the therapeutic effect of transcranial magnetic stimulation depends on the ability to accurately target the areas of the brain that need to be stimulated.In recent years,with the development of neuronavigation systems,mobile augmented reality technology,and the new methods of processing magnetic resonance imaging(MRI)data,the accuracy of stimulus target localization and the optimization of target selection are expected to improve further. OBJECTIVE:To review the principle of MRI-based image navigation and its application in transcranial magnetic stimulation and summarize the roles of different modal MRI data analyses in guiding the selection of target areas for transcranial magnetic stimulation. METHODS:An online computer search for relevant literature was performed in PubMed,CNKI database and WanFang database,with the keywords"transcranial magnetic stimulation,coil positioning,neuronavigation,augmented reality,magnetic resonance,theory."Finally,63 documents were included for review. RESULTS AND CONCLUSION:Among the traditional methods of positioning transcranial magnetic stimulation coils,the"5 cm rule"and the international electroencephalogram 10-20 positioning method are the most commonly used.These methods have the advantages of simplicity and economy,but they rely too much on the operator's experience and there were technical differences between operators.The neuronavigation system,which is based on stereotactic technology,is the guiding method for positioning transcranial magnetic stimulation coils with the highest visual degree and accuracy.It achieves visual positioning through MRI data acquisition,3D brain reconstruction,head model registration and stereogeometric positioning.It has high application value in clinical treatment and scientific research,but it cannot be promoted in medical institutions due to its high cost.For various medical institutions,mobile augmented reality is a cost-effective and efficient alternative to the neuronavigation system,which achieves visual positioning of brain tissue under the scalp through MRI data acquisition,2D/3D image construction,virtual image and real brain image superposition.It has the advantages of directly visualization and low cost,and is expected to be popularized and applied in primary medical units.Although the superiority of clinical efficacy of visual coil positioning over the electroencephalogram 10-20 localization strategy has not yet been fully demonstrated,with the progress of brain MRI data analysis,visual positioning is expected to further optimize the target selection strategy of transcranial magnetic stimulation therapy and to improve the response rate and individuation degree of transcranial magnetic stimulation treatment.This is a promising and challenging research direction in the future.
10.Chemical constituents from stems and leaves of Lonicera confusa and their anti-inflammatory activities
Xiao-Hua JIANG ; Yu-Lu WEI ; Jun BAI ; Xiao-Jie YAN ; Dian-Peng LI ; Feng-Lai LU
Chinese Traditional Patent Medicine 2024;46(2):484-489
AIM To study the chemical constituents and their anti-inflammatory activities of stems and leaves of Lonicera confusa DC.METHODS The 80%methanol extract from stems and leaves of L.confusa DC was isolated and purified by Diaion HP20SS,Sephadex LH-20,HSCCC and preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their anti-inflammatory activities were evaluated by measuring NO production of LPS-stimulated RAW264.7 cells in vitro.RESULTS Thirteen compounds were isolated and identified as benzyl alcohol-O-β-D-glucopyranosyl-(1 →6)-β-D-glucopyranoside(1),sweroside(2),epi-vogeloside(3),vogeloside(4),secologanoside(5),secoxyloganin(6),secologanin dimethyl acetal(7),methyl chlorogenate(8),apigenin-7-O-β-D-glucopyranoside(9),luteolin-7-O-β-D-glucopyranoside(10),rhoifolin(11),luteolin-7-O-α-L-arabinopyranosyl(1→6)-β-D-glucopyranoside(12),and lonicerin(13).Compounds 2-8,11-13 inhibited the NO production of LPS-induced cells.CONCLUSION Compound 1 is first isolated from family Lonicera,compounds 3,5,7,9,11,and 12 are obtained from the stems and leaves of this plant for the first time.Compounds 2-8,11-13 exhibited anti-inflammatory activities.


Result Analysis
Print
Save
E-mail