1.Advances in nanocarrier-mediated cancer therapy: Progress in immunotherapy, chemotherapy, and radiotherapy.
Yue PENG ; Min YU ; Bozhao LI ; Siyu ZHANG ; Jin CHENG ; Feifan WU ; Shuailun DU ; Jinbai MIAO ; Bin HU ; Igor A OLKHOVSKY ; Suping LI
Chinese Medical Journal 2025;138(16):1927-1944
Cancer represents a major worldwide disease burden marked by escalating incidence and mortality. While therapeutic advances persist, developing safer and precisely targeted modalities remains imperative. Nanomedicines emerges as a transformative paradigm leveraging distinctive physicochemical properties to achieve tumor-specific drug delivery, controlled release, and tumor microenvironment modulation. By synergizing passive enhanced permeation and retention effect-driven accumulation and active ligand-mediated targeting, nanoplatforms enhance pharmacokinetics, promote tumor microenvironment enrichment, and improve cellular internalization while mitigating systemic toxicity. Despite revolutionizing cancer therapy through enhanced treatment efficacy and reduced adverse effects, translational challenges persist in manufacturing scalability, longterm biosafety, and cost-efficiency. This review systematically analyzes cutting-edge nanoplatforms, including polymeric, lipidic, biomimetic, albumin-based, peptide engineered, DNA origami, and inorganic nanocarriers, while evaluating their strategic advantages and technical limitations across three therapeutic domains: immunotherapy, chemotherapy, and radiotherapy. By assessing structure-function correlations and clinical translation barriers, this work establishes mechanistic and translational references to advance oncological nanomedicine development.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Nanoparticles/chemistry*
;
Animals
;
Nanomedicine/methods*
;
Drug Delivery Systems/methods*
;
Drug Carriers/chemistry*
;
Radiotherapy/methods*
2.Comprehensive application of fingerprint studies, content determination, and chemometrics to identify geo-markers of Chuanxiong Rhizoma.
Meng-Yuan WU ; Cheng PENG ; Chun-Wang MENG ; Juan-Ru LIU ; Qin-Mei ZHOU ; Ou DAI ; Liang XIONG
China Journal of Chinese Materia Medica 2025;50(1):152-171
This study established a high performance liquid chromatography(HPLC) fingerprint of Chuanxiong Rhizoma from different producing areas and screened its potential differential components for producing areas by chemometrics. Furthermore, the content of the above differential components in Chuanxiong Rhizoma from different producing areas was measured and compared. Then, the geoherbalism markers(geo-markers) that can be used to distinguish Dao-di and non-Dao-di Chuanxiong Rhizoma were excavated by chemometrics. In fingerprint studies, a total of 27 common peaks were determined, and the fingerprint similarity for 37 batches of Chuanxiong Rhizoma samples from different producing areas was above 0.968. The orthogonal partial least squares-discriminant analysis(OPLS-DA) was capable of distinguishing Chuanxiong Rhizoma from Sichuan and from three other provinces, as well as Dao-di Chuanxiong Rhizoma(from Dujiangyan) and non-Dao-di Chuanxiong Rhizoma(from other producing areas) in Sichuan province. Meanwhile, 14 potential differential components in Chuanxiong Rhizoma from different provinces and 16 potential differential components in Chuanxiong Rhizoma from different producing areas in Sichuan were screened by the variable importance in projection(VIP) analysis under OPLS-DA. The reference standards were used to identify 10 potential differential components in the common peaks, and subsequent content determination verified that the content of the above 10 potential differential components was different among different producing areas. Then, the OPLS-DA and VIP analysis were performed with the content of the 10 potential differential components as variables. The results showed that Z-ligustilide, chlorogenic acid, and the ratio of butylidenephthalide/senkyunolide A were the geo-markers that can distinguish Chuanxiong Rhizoma from Sichuan and Chuanxiong Rhizoma from Shaanxi, Hebei, and Jiangxi, while Z-ligustilide, n-butylphthalide, and the ratios of Z-ligustilide/senkyunolide A and butylidenephthalide/senkyunolide A were the geo-markers that can distinguish Dao-di Chuanxiong Rhizoma(from Dujiangyan) and non-Dao-di Chuanxiong Rhizoma(from other producing areas) in Sichuan province. This study elucidated the differences in material basis of Dao-di and non-Dao-di Chuanxiong Rhizoma based on fingerprinting and content determination combined with chemometrics, which provides a reference for the study of material basis of Dao-di traditional Chinese medicine.
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Chemometrics/methods*
;
Quality Control
3.Single-incision laparoscopic totally extraperitoneal retrieval of retroperitoneal vas deferens in vasovasostomy for obstructive azoospermia patients postchildhood bilateral herniorrhaphy.
Chen-Wang ZHANG ; Wei-Dong WU ; Jun-Wei XU ; Jing-Peng ZHAO ; Er-Lei ZHI ; Yu-Hua HUANG ; Chen-Cheng YAO ; Fu-Jun ZHAO ; Zheng LI ; Peng LI
Asian Journal of Andrology 2025;27(1):137-138
4.Vascular Protection of Neferine on Attenuating Angiotensin II-Induced Blood Pressure Elevation by Integrated Network Pharmacology Analysis and RNA-Sequencing Approach.
A-Ling SHEN ; Xiu-Li ZHANG ; Zhi GUO ; Mei-Zhu WU ; Ying CHENG ; Da-Wei LIAN ; Chang-Geng FU ; Jun PENG ; Min YU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(8):694-706
OBJECTIVE:
To explore the functional roles and underlying mechanisms of neferine in the context of angiotensin II (Ang II)-induced hypertension and vascular dysfunction.
METHODS:
Male mice were infused with Ang II to induce hypertension and randomly divided into treatment groups receiving neferine or a control vehicle based on baseline blood pressure using a random number table method. The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg per minute), and neferine (0.1, 1, or 10 mg/kg), valsartan (10 mg/kg), or double distilled water was administered intragastrically once daily for 6 weeks. A non-invasive blood pressure system, ultrasound, and hematoxylin and eosin staining were performed to assess blood pressure and vascular changes. RNA sequencing and network pharmacology were employed to identify differentially expressed transcripts (DETs) and pathways. Vascular ring tension assay was used to test vascular function. A7R5 cells were incubated with neferine for 24 h and then treated with Ang II to record the real-time Ca2+ concentration by confocal microscope. Immunohistochemistry (IHC) and Western blot were used to evaluate vasorelaxation, calcium, and the extracellular signal-regulated kinase (ERK)1/2 pathway.
RESULTS:
Neferine treatment effectively mitigated the elevation in blood pressure, pulse wave velocity, aortic thickening in the abdominal aorta of Ang II-infused mice (P<0.05). RNA sequencing and network pharmacology analysis identified 355 DETs that were significantly reversed by neferine treatment, along with 25 potential target genes, which were further enriched in multiple pathways and biological processes, such as ERK1 and ERK2 cascade regulation, calcium pathway, and vascular smooth muscle contraction. Further investigation revealed that neferine treatment enhanced vasorelaxation and reduced Ca2+-dependent contraction of abdominal aortic rings, independent of endothelium function (P<0.05). The underlying mechanisms were mediated, at least in part, via suppression of receptor-operated channels, store-operated channels, or voltage-operated calcium channels. Neferine pre-treatment demonstrated a reduction in intracellular Ca2+ release in Ang II stimulated A7R5 cells. IHC staining and Western blot confirmed that neferine treatment effectively attenuated the upregulation of p-ERK1/2 both in vivo and in vitro, which was similar with treatment of ERK1/2 inhibitor PD98059 (P<0.05).
CONCLUSIONS
Neferine remarkably alleviates Ang II-induced elevation of blood pressure, vascular dysfunction, and pathological changes in the abdominal aorta. This beneficial effect is mediated by the modulation of multiple pathways, including calcium and ERK1/2 pathways.
Animals
;
Angiotensin II
;
Male
;
Benzylisoquinolines/therapeutic use*
;
Network Pharmacology
;
Blood Pressure/drug effects*
;
Sequence Analysis, RNA
;
Mice
;
Hypertension/chemically induced*
;
Mice, Inbred C57BL
;
Calcium/metabolism*
5.NO-releasing double-crosslinked responsive hydrogels accelerate the treatment and repair of ischemic stroke.
Wen GUO ; Cheng HU ; Yue WANG ; Wen ZHANG ; Shaomin ZHANG ; Jin PENG ; Yunbing WANG ; Jinhui WU
Acta Pharmaceutica Sinica B 2025;15(2):1112-1125
Stroke is a global disease that seriously threatens human life. The pathological mechanisms of ischemic stroke include neuroinflammation, oxidative stress, and the destruction of blood vessels at the lesion site. Here, a biocompatible in situ hydrogel platform was designed to target multiple pathogenic mechanisms post-stroke, including anti-inflammation, anti-oxidant, and promotion of angiogenesis. Double-crosslinked responsive multifunctional hydrogels could quickly respond to the pathological microenvironment of the ischemic damage site and mediate the delivery of nitric oxide (NO) and ISO-1 (inhibitor of macrophage migration inhibitory factor, MIF). The hydrogel demonstrated good biocompatibility and could scavenge reactive oxygen species (ROS) and inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-10 (IL-10), and MIF. In a mouse stroke model, hydrogels, when situated within the microenvironment of cerebral infarction characterized by weak acidity and elevated ROS release, would release anti-inflammatory nanoparticles rapidly that exert an anti-inflammatory effect. Concurrently, NO was sustained release to facilitate angiogenesis and provide neuroprotective effects. Neurological function was significantly improved in treated mice as assessed by the modified neurological severity score, rotarod test, and open field test. These findings indicate that the designed hydrogel held promise for sustained delivery of NO and ISO-1 to alleviate cerebral ischemic injury by responding to the brain's pathological microenvironment.
6.Erratum: Author correction to "Up-regulation of glyclipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication" Acta Pharm Sin B 9 (2019) 769-781.
Menghao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2025;15(3):1721-1721
[This corrects the article DOI: 10.1016/j.apsb.2019.01.013.].
7.Magnolol inhibits appetite and causes visceral fat loss through Growth/differentiation factor-15 (GDF-15) by activating transcription factor 4-CCAAT enhancer binding protein γ-mediated endoplasmic reticulum stress responses.
Keru CHENG ; Yanyun ZHOU ; Yilong HAO ; Shengyun WU ; Nanping WANG ; Peng ZHANG ; Yinfang WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):334-345
Magnolol, a compound extracted from Magnolia officinalis, demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases. Its biological activities encompass anti-inflammatory, antioxidant, anticoagulant, and anti-diabetic effects. Growth/differentiation factor-15 (GDF-15), a member of the transforming growth factor β superfamily, is considered a potential therapeutic target for metabolic disorders. This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism. The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo, and determined the involvement of endoplasmic reticulum (ER) stress signaling in this process. Luciferase reporter assays, chromatin immunoprecipitation, and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4 (ATF4), CCAAT enhancer binding protein γ (CEBPG), and CCCTC-binding factor (CTCF). The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene, as well as the influence of single nucleotide polymorphisms (SNPs) on magnolol and ATF4-induced transcription activity. Results demonstrated that magnolol triggers GDF-15 production in endothelial cells (ECs), hepatoma cell line G2 (HepG2) and hepatoma cell line 3B (Hep3B) cell lines, and primary mouse hepatocytes. The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene. SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15. In high-fat diet ApoE-/- mice, administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15. These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity, indicating its potential as a drug for the treatment of metabolic disorders.
Lignans/pharmacology*
;
Growth Differentiation Factor 15/metabolism*
;
Animals
;
Biphenyl Compounds/pharmacology*
;
Endoplasmic Reticulum Stress/drug effects*
;
Activating Transcription Factor 4/genetics*
;
Mice
;
Humans
;
Male
;
Magnolia/chemistry*
;
CCAAT-Enhancer-Binding Proteins/genetics*
;
Mice, Inbred C57BL
8.Development History and Frontier Research Progress of Pharmacokinetics of Traditional Chinese Medicine
Li-Jun ZHU ; Zhuo-Ru HE ; Cai-Yan WANG ; Dan-Yi LU ; Jun-Ling YANG ; Wei-Wei JIA ; Chen CHENG ; Yu-Tong WANG ; Liu YANG ; Zhi-Peng CHEN ; Bao-Jian WU ; Rong ZHANG ; Chuan LI ; Zhong-Qiu LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2746-2757
Pharmacokinetics of traditional Chinese medicine(TCM)is a discipline that adopts pharmacokinetic research methods and techniques under the guidance of TCM theories to elucidate the dynamic changes in the absorption,distribution,metabolism and excretion of active ingredients,active sites,single-flavour Chinese medicinal and compounded formulas of TCM in vivo.However,the sources and components of TCM are complex,and the pharmacodynamic substances and mechanisms of action of the majority of TCM are not yet clear,so the pharmacokinetic study of TCM is later than that of chemical medicines,and is far more complex than that of chemical medicines,and its development also confronts with challenges.The pharmacokinetic study of TCM originated in the 1950s and has experienced more than 70 years of development from the initial in vivo study of a single active ingredient,to the pharmacokinetic and pharmacodynamic study of active ingredients,to the pharmacokinetic study of compound and multi-component of Chinese medicine.In recent years,with the help of advanced extraction,separation and analysis technologies,gene-editing animals and cell models,multi-omics technologies,protein purification and structure analysis technologies,and artificial intelligence,etc.,the pharmacokinetics of TCM has been substantially applied in revealing and elucidating the pharmacodynamic substances and mechanisms of action of Chinese medicines,research and development of new drugs of TCM,scientific and technological upgrading of large varieties of Chinese patent medicines,as well as guiding the rational use of medicines in clinics.Pharmacokinetic studies of TCM have made remarkable breakthroughs and significant development in theory,methodology,technology and application.In this paper,the history of the development of pharmacokinetics of TCM and the progress of cutting-edge research was reviewed,with the aim of providing ideas and references for the pharmacokinetics of TCM and related research.
9.Robotic visualization system-assisted microsurgical reconstruction of the reproductive tract in male rats
Zheng LI ; Jian-Jun DONG ; Ming LIU ; Xun-Zhu WU ; Ren-Feng JIA ; San-Wei GUO ; Kai MENG ; Chen-Cheng YAO ; Er-Lei ZHI ; Gang LIU ; Da-Xian TAN ; Zheng LI ; Peng LI
National Journal of Andrology 2024;30(8):675-680
Objective:To evaluate the safety and efficiency of robotic visualization system(RVS)-assisted microsurgical re-construction of the reproductive tract in male rats and the satisfaction of the surgeons.Methods:We randomly divided 8 adult male SD rats into an experimental and a control group,the former treated by RVS-assisted microsurgical vasoepididymostomy(VE)or vaso-vasostomy(VV),and the latter by VE or VV under the standard operating microscope(SOM).We compared the operation time,me-chanical patency and anastomosis leakage immediately after surgery,and the surgeons'satisfaction between the two groups.Results:No statistically significant difference was observed the operation time between the experimental and the control groups,and no anasto-mosis leakage occurred after VV in either group.The rate of mechanical patency immediately after surgery was 100%in both groups,and that of anastomosis leakage after VE was 16.7%in the experimental group and 14.3%in the control.Compared with the control group,the experimental group achieved dramatically higher scores on visual comfort(3.00±0.76 vs 4.00±0.53,P<0.05),neck/back comfort(2.75±1.16 vs 4.38±1.06,P<0.01)and man-machine interaction(3.88±1.55 va 4.88±0.35,P<0.05).There were no statistically significant differences in the scores on image definition and operating room suitability between the two groups.Conclusion:RVS can be used in microsurgical reconstruction of the reproductive tract in male rats and,with its advantages over SOM in ergonomic design and image definition,has a potential application value in male reproductive system micosurgery.
10.Preparation and properties of selective laser melting of porous titanium at a low energy density
Jinhui CHENG ; Quan WU ; Min PENG ; Changli HUANG ; Huimin TIAN ; Yang LI
Chinese Journal of Tissue Engineering Research 2024;28(5):664-668
BACKGROUND:At present,the traditional powder sintering method is easy to introduce impurities in the process of preparing porous titanium,and the manufacturing of porous titanium still faces two major problems:impurity pollution and difficult control of the material forming process. OBJECTIVE:To prepare pure porous titanium with certain porosity,and analyze the microstructure evolution and properties of the porous titanium. METHODS:Porous titanium was prepared at a low energy density by selective laser melting technology.The parameter range of porous titanium with large porosity was obtained by measuring the porosity of the formed specimen,and the evolution of the microstructure and mechanical properties of the specimen in the range were analyzed. RESULTS AND CONCLUSION:(1)With the increase in energy density,the porosity of the porous titanium specimen decreased gradually.When the energy density was between 10.61 and 27.78 J/mm3,porous titanium with a porosity of 11.23%-33.67%could be formed.When the energy density was between 27.78-37.88 J/mm3,the forming parts were relatively dense.(2)The phase composition of porous titanium formed was mainly α titanium.With the increase in energy density,the porosity gradually decreased,and the pore morphology changed from irregularly connected pores to closed nearly spherical pores.The powder particles changed from a slightly sintered neck to a continuous fuse.The CT scan results revealed that there were a large number of connected pores in the forming specimen with a large specific surface area and the pore radius was roughly distributed between 2-6 μm at the energy density of 10.61 J/mm3.Simultaneously,porous titanium with compressive strength of 188-1 000 MPa could be obtained at the energy density of 10.61-27.78 J/mm3,which could meet the requirements of biomedical applications.(3)These results have confirmed that the selective laser melting technology can overcome the problems of impurity pollution and long manufacturing cycle caused by the traditional preparation process,and provide an effective solution for the preparation of porous titanium with excellent mechanical properties.

Result Analysis
Print
Save
E-mail