1.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
2.Mass Spectrometry-based Cell Imaging
Peng ZHOU ; Xin WANG ; Qian LUO ; Chao ZHAO
Progress in Biochemistry and Biophysics 2025;52(4):858-868
Cell models can simulate a variety of life states and disease developments, including single cells, two-dimensional (2D) cell cultures, three-dimensional (3D) multicellular spheroids, and organoids. They are essential tools for addressing complex biochemical questions. With continuous advancements in biological and cellular analysis technologies, in vitro cellular models designed to answer scientific questions have evolved rapidly. Early in vitro models primarily relied on 2D systems, which failed to accurately replicate the complex cellular compositions and microenvironmental interactions observed in vivo, let alone support sophisticated investigations into cellular biological functions. Subsequent improvements in cell culture techniques led to the development of 3D culture-based models, such as cellular spheroids. The advent of pluripotent stem cell technology further advanced the development of organoid systems, which closely mimic human organ development. Compared to traditional 2D models, both 3D cellular models and organoids offer significant advantages, including personalization and enhanced physiological relevance, making them particularly suitable for exploring molecular mechanisms of disease progression, discovering novel cellular and biomolecular functions, and conducting related studies. The imaging analysis of common cellular models primarily employs labeling-based methods for in situ imaging of targeted genes, proteins, and small-molecule metabolites, enabling further research on cell types, states, metabolism, and drug efficacy. However, these approaches have drawbacks such as poor labeling specificity and complex experimental procedures. By using cells as experimental models, mass spectrometry technology combined with morphological analysis can reveal quantitative changes and spatial distributions of various biological substances at the spatiotemporal level, including metabolites, proteins, lipids, peptides, drugs, environmental pollutants, and metals. This allows for the investigation of cell-cell interactions, tumor microenvironments, and cellular bioinformational heterogeneity. The application of these cutting-edge imaging technologies generates vast amounts of cellular data, necessitating the development of rapid, efficient, and highly accurate image data algorithms for precise segmentation and identification of single cells, multi-organelle structures, rare cell subpopulations, and complex cellular morphologies. A critical focus lies in creating deep learning models and algorithms that enhance the accuracy of cellular visualization. At the same time, establishing more robust data integration tools is essential not only for analyzing and interpreting outputs but also for effectively uncovering the biological significance of spatially resolved mass spectrometry data. Developing a cell imaging platform with high versatility, operational stability, and specificity to enable data interoperability will significantly enhance its utility in clinical research, thereby advancing investigations into disease molecular mechanisms and supporting precision diagnostics and therapeutics. In contrast to genomic, transcriptomic, and proteomic information, the metabolome can rapidly respond to external stimuli and cellular physiological changes within a short timeframe. This rapid and precise reflection of ongoing cellular state alterations has positioned spatial metabolomics as a pivotal approach for exploring the molecular mechanisms underlying physiological and pathological processes in cells, tissues, and organisms. In this review, we summarize research on cell imaging based on mass spectrometry technologies, including the selection and preparation of cell models, morphological analysis of cell models, spatial omics techniques based on mass spectrometry, mass cytometry, and their applications. We also discuss the current challenges and propose future directions for development in this field.
3.Dynamics of eosinophil infiltration and microglia activation in brain tissues of mice infected with Angiostrongylus cantonensis
Fanna WEI ; Renjie ZHANG ; Yahong HU ; Xiaoyu QIN ; Yunhai GUO ; Xiaojin MO ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Jiatian GUO ; Peng SONG ; Yanhong CHU ; Bin XU ; Ting ZHANG ; Yuchun CAI ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2025;37(2):163-175
Objective To investigate the changes in eosinophil counts and the activation of microglial cells in the brain tissues of mice at different stages of Angiostrongylus cantonensis infection, and to examine the role of microglia in regulating the progression of angiostrongyliasis and unravel the possible molecular mechanisms. Methods Fifty BALB/c mice were randomly divided into the control group and the 7-d, 14-d, 21-day and 25-d infection groups, of 10 mice in each group. All mice in infection groups were infected with 30 stage III A. cantonensis larvae by gavage, and animals in the control group was given an equal amount of physiological saline. Five mice were collected from each of infection groups on days 7, 14, 21 d and 25 d post-infection, and 5 mice were collected from the control group on the day of oral gavage. The general and focal functional impairment was scored using the Clark scoring method to assess the degree of mouse neurological impairment. Five mice from each of infection groups were sacrificed on days 7, 14, 21 d and 25 d post-infection, and 5 mice from the control group were sacrificed on the day of oral gavage. Mouse brain tissues were sampled, and the pathological changes of brain tissues were dynamically observed using hematoxylin and eosin (HE) staining. Immunofluorescence staining with eosinophilic cationic protein (ECP) and ionized calcium binding adaptor molecule 1 (Iba1) was used to assess the degree of eosinophil infiltration and the counts of microglial cells in mouse brain tissues in each group, and the morphological parameters of microglial cells (skeleton analysis and fractal analysis) were quantified by using Image J software to determine the morphological changes of microglial cells. In addition, the expression of M1 microglia markers Fcγ receptor III (Fcgr3), Fcγ receptor IIb (Fcgr2b) and CD86 antigen (Cd86), M2 microglia markers Arginase 1 (Arg1), macrophage mannose receptor C-type 1 (Mrc1), chitinase-like 3 (Chil3), and phagocytosis genes myeloid cell triggering receptor expressed on myeloid cells 2 (Trem2), CD68 antigen (Cd68), and apolipoprotein E (Apoe) was quantified using real-time quantitative reverse transcription PCR (RT-qPCR) assay in the mouse cerebral cortex of mice post-infection. Results A large number of A. cantonensis larvae were seen on the mouse meninges surface post-infection, and many neuronal nuclei were crumpled and deeply stained, with a large number of bleeding points in the meninges. The median Clark scores of mouse general functional impairment were 0 (interquartile range, 0), 0 (interquartile range, 0.5), 6 (interquartile range, 1.0), 14 (interquartile range, 8.5) points and 20 (interquartile range, 9.0) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.45, P < 0.01), and the median Clark scores of mouse focal functional impairment were 0 (interquartile range, 0), 2 (interquartile range, 2.5), 7 (interquartile range, 3.0), 18 (interquartile range, 5.0) points and 25 (interquartile range, 6.5) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.72, P < 0.01). The mean scores of mice general and focal functional impairment were all higher in the infection groups than in the control group (all P values < 0.05). Immunofluorescence staining showed a significant difference in the eosinophil counts in mouse brain tissues among the five groups (F = 40.05, P < 0.000 1), and the eosinophil counts were significantly higher in mouse brain tissues in the 14-d (3.08 ± 0.78) and 21-d infection groups (5.97 ± 1.37) than in the control group (1.00 ± 0.28) (both P values < 0.05). Semi-quantitative analysis of microglia immunofluorescence showed a significant difference in the counts of microglial cells among the five groups (F = 17.66, P < 0.000 1), and higher Iba1 levels were detected in mouse brain tissues in 14-d (5.75 ± 1.28), 21-d (6.23 ± 1.89) and 25-d infection groups (3.70 ± 1.30) than in the control group (1.00 ± 0.30) (all P values < 0.05). Skeleton and fractal analyses showed that the branch length [(162.04 ± 34.10) μm vs. (395.37 ± 64.11) μm; t = 5.566, P < 0.05] and fractal dimension of microglial cells (1.30 ± 0.01 vs. 1.41 ± 0.03; t = 5.266, P < 0.05) were reduced in mouse brain tissues in the 21-d infection group relative to the control group. In addition, there were significant differences among the 5 groups in terms of M1 and M2 microglia markers Fcgr3 (F = 48.34, P < 0.05), Fcgr2b (F = 55.46, P < 0.05), Cd86 (F = 24.44, P < 0.05), Arg1 (F = 31.18, P < 0.05), Mrc1 (F = 15.42, P < 0.05) and Chil3 (F = 24.41, P < 0.05), as well as phagocytosis markers Trem2 (F = 21.19, P < 0.05), Cd68 (F = 43.95, P < 0.05) and Apoe (F = 7.12, P < 0.05) in mice brain tissues. Conclusions A. cantonensis infections may induce severe pathological injuries in mouse brain tissues that are characterized by massive eosinophil infiltration and persistent activation of microglia cells, thereby resulting in progressive deterioration of neurological functions.
4.Analysis of the nutritional status and influencing factors of Tibetan and Mongolian children and adolescents in Golmud City, Qinghai Province in 2022
Chinese Journal of School Health 2025;46(5):651-656
Objective:
To investigate the nutritional status and influencing factors among Tibetan and Mongolian children and adolescents aged 7-18 years in high-altitude regions, so as to provide evidence for early prevention and control of malnutrition in this population.
Methods:
From May to June 2022, a cluster sampling method was employed to recruit 1 019 Tibetan and Mongolian children and adolescents aged 7-18 years from two primary and secondary schools in Golmud City. Physical examinations, dietary frequency questionnaires, and physical activity assessments were conducted. Nutritional status was classified as obesity, combined overweight/obesity, underweight, or central obesity according to national standards including Screening for Overweight and Obesity among School-age Children and Adolescents, Screening Standard for Malnutrition of School-age Children and Adolescents, Blue Book on Obesity Prevention and Control in China. Chi-square tests, t-test and Logistic regression analyses were performed to identify factors associated with different nutritional statuses.
Results:
The detection rates of obesity, combined overweight/obesity, underweight, and central obesity were 8.0%, 18.1%, 5.2%, and 19.7%, respectively. The height of children and adolescents across all age groups was generally lower than the national standard values. Tibetan participants exhibited significantly lower height-for-age Z-scores (HAZ)(9-10, 13-17 years, Z =2.01, 2.78, 4.16, 3.38, 4.12, 3.63, 3.00) and BMI-for-age Z-scores (BAZ) compared to Mongolian participants ( Z =-2.95, -2.47, -2.31, -2.89, -2.14, -2.17)( P < 0.05 ). Multivariate Logistic regression revealed that Mongolian children and adolescents had higher risks of obesity ( OR =2.20) and combined overweight/obesity ( OR = 2.18 ) ( P <0.05). Additionally, insufficient moderate-to-vigorous physical activity (MVPA) was associated with an increased risk of central obesity ( OR =1.48, P <0.05), compared with children and adolescents who meet the standard of MVPA.
Conclusions
The rates of overweight and obesity among Tibetan and Mongolian children and adolescents in Golmud City are higher, influenced by multiple factors. Nutrition interventions and physical activity strategies tailored to ethnic characteristics should be implemented, with emphasis on promoting MVPA to improve nutritional outcomes in this population.
6.Cost-effectiveness of Fractional Flow Reserve Versus Intravascular Ultrasound to Guide Percutaneous Coronary Intervention: Results From the FLAVOUR Study
Doyeon HWANG ; Hea-Lim KIM ; Jane KO ; HyunJin CHOI ; Hanna JEONG ; Sun-ae JANG ; Xinyang HU ; Jeehoon KANG ; Jinlong ZHANG ; Jun JIANG ; Joo-Yong HAHN ; Chang-Wook NAM ; Joon-Hyung DOH ; Bong-Ki LEE ; Weon KIM ; Jinyu HUANG ; Fan JIANG ; Hao ZHOU ; Peng CHEN ; Lijiang TANG ; Wenbing JIANG ; Xiaomin CHEN ; Wenming HE ; Sung Gyun AHN ; Ung KIM ; You-Jeong KI ; Eun-Seok SHIN ; Hyo-Soo KIM ; Seung-Jea TAHK ; JianAn WANG ; Tae-Jin LEE ; Bon-Kwon KOO ;
Korean Circulation Journal 2025;55(1):34-46
Background and Objectives:
The Fractional Flow Reserve and Intravascular UltrasoundGuided Intervention Strategy for Clinical Outcomes in Patients with Intermediate Stenosis (FLAVOUR) trial demonstrated non-inferiority of fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) compared with intravascular ultrasound (IVUS)-guided PCI. We sought to investigate the cost-effectiveness of FFR-guided PCI compared to IVUS-guided PCI in Korea.
Methods:
A 2-part cost-effectiveness model, composed of a short-term decision tree model and a long-term Markov model, was developed for patients who underwent PCI to treat intermediate stenosis (40% to 70% stenosis by visual estimation on coronary angiography).The lifetime healthcare costs and quality-adjusted life-years (QALYs) were estimated from the healthcare system perspective. Transition probabilities were mainly referred from the FLAVOUR trial, and healthcare costs were mainly obtained through analysis of Korean National Health Insurance claims data. Health utilities were mainly obtained from the Seattle Angina Questionnaire responses of FLAVOUR trial participants mapped to EQ-5D.
Results:
From the Korean healthcare system perspective, the base-case analysis showed that FFR-guided PCI was 2,451 U.S. dollar lower in lifetime healthcare costs and 0.178 higher in QALYs compared to IVUS-guided PCI. FFR-guided PCI remained more likely to be cost-effective over a wide range of willingness-to-pay thresholds in the probabilistic sensitivity analysis.
Conclusions
Based on the results from the FLAVOUR trial, FFR-guided PCI is projected to decrease lifetime healthcare costs and increase QALYs compared with IVUS-guided PCI in intermediate coronary lesion, and it is a dominant strategy in Korea.
7.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
8.Aberrant fragmentomic features of circulating cell-free mitochondrial DNA enable early detection and prognosis prediction of hepatocellular carcinoma
Yang LIU ; Fan PENG ; Siyuan WANG ; Huanmin JIAO ; Kaixiang ZHOU ; Wenjie GUO ; Shanshan GUO ; Miao DANG ; Huanqin ZHANG ; Weizheng ZHOU ; Xu GUO ; Jinliang XING
Clinical and Molecular Hepatology 2025;31(1):196-212
Background/Aims:
Early detection and effective prognosis prediction in patients with hepatocellular carcinoma (HCC) provide an avenue for survival improvement, yet more effective approaches are greatly needed. We sought to develop the detection and prognosis models with ultra-sensitivity and low cost based on fragmentomic features of circulating cell free mtDNA (ccf-mtDNA).
Methods:
Capture-based mtDNA sequencing was carried out in plasma cell-free DNA samples from 1168 participants, including 571 patients with HCC, 301 patients with chronic hepatitis B or liver cirrhosis (CHB/LC) and 296 healthy controls (HC).
Results:
The systematic analysis revealed significantly aberrant fragmentomic features of ccf-mtDNA in HCC group when compared with CHB/LC and HC groups. Moreover, we constructed a random forest algorithm-based HCC detection model by utilizing ccf-mtDNA fragmentomic features. Both internal and two external validation cohorts demonstrated the excellent capacity of our model in distinguishing early HCC patients from HC and highrisk population with CHB/LC, with AUC exceeding 0.983 and 0.981, sensitivity over 89.6% and 89.61%, and specificity over 98.20% and 95.00%, respectively, greatly surpassing the performance of alpha-fetoprotein (AFP) and mtDNA copy number. We also developed an HCC prognosis prediction model by LASSO-Cox regression to select 20 fragmentomic features, which exhibited exceptional ability in predicting 1-year, 2-year and 3-year survival (AUC=0.8333, 0.8145 and 0.7958 for validation cohort, respectively).
Conclusions
We have developed and validated a high-performing and low-cost approach in a large clinical cohort based on aberrant ccf-mtDNA fragmentomic features with promising clinical translational application for the early detection and prognosis prediction of HCC patients.
9.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
10.Aberrant fragmentomic features of circulating cell-free mitochondrial DNA enable early detection and prognosis prediction of hepatocellular carcinoma
Yang LIU ; Fan PENG ; Siyuan WANG ; Huanmin JIAO ; Kaixiang ZHOU ; Wenjie GUO ; Shanshan GUO ; Miao DANG ; Huanqin ZHANG ; Weizheng ZHOU ; Xu GUO ; Jinliang XING
Clinical and Molecular Hepatology 2025;31(1):196-212
Background/Aims:
Early detection and effective prognosis prediction in patients with hepatocellular carcinoma (HCC) provide an avenue for survival improvement, yet more effective approaches are greatly needed. We sought to develop the detection and prognosis models with ultra-sensitivity and low cost based on fragmentomic features of circulating cell free mtDNA (ccf-mtDNA).
Methods:
Capture-based mtDNA sequencing was carried out in plasma cell-free DNA samples from 1168 participants, including 571 patients with HCC, 301 patients with chronic hepatitis B or liver cirrhosis (CHB/LC) and 296 healthy controls (HC).
Results:
The systematic analysis revealed significantly aberrant fragmentomic features of ccf-mtDNA in HCC group when compared with CHB/LC and HC groups. Moreover, we constructed a random forest algorithm-based HCC detection model by utilizing ccf-mtDNA fragmentomic features. Both internal and two external validation cohorts demonstrated the excellent capacity of our model in distinguishing early HCC patients from HC and highrisk population with CHB/LC, with AUC exceeding 0.983 and 0.981, sensitivity over 89.6% and 89.61%, and specificity over 98.20% and 95.00%, respectively, greatly surpassing the performance of alpha-fetoprotein (AFP) and mtDNA copy number. We also developed an HCC prognosis prediction model by LASSO-Cox regression to select 20 fragmentomic features, which exhibited exceptional ability in predicting 1-year, 2-year and 3-year survival (AUC=0.8333, 0.8145 and 0.7958 for validation cohort, respectively).
Conclusions
We have developed and validated a high-performing and low-cost approach in a large clinical cohort based on aberrant ccf-mtDNA fragmentomic features with promising clinical translational application for the early detection and prognosis prediction of HCC patients.


Result Analysis
Print
Save
E-mail