1.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
2.Study on assessment methods for acetabular cup size in total hip arthroplasty.
Jinzi WANG ; Wenju CHANG ; Pei ZHANG ; Xiang LI ; Yong ZHANG ; Shuoshuo ZHANG ; Hai DING
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):163-167
OBJECTIVE:
To evaluate precise assessment methods for predicting the optimal acetabular cup size in total hip arthroplasty (THA).
METHODS:
A clinical data of 73 patients (80 hips) who underwent primary THA between December 2022 and July 2024 and met the inclusion criteria was analyzed. There were 39 males and 34 females with an average age of 66.3 years (range, 56-78 years). Among them, 66 cases were unilateral THA and 7 were bilateral THAs. There were 29 patients (34 hips) of osteoarthritis, 35 patients (35 hips) of femoral neck fractures, and 9 patients (11 hips) of osteonecrosis of the femoral head. Based on anteroposterior pelvic X-ray films, three methods were employed to predict acetabular cup size, including preoperative template planning, radiographic femoral head diameter (FHD) measurement, and intraoperative FHD measurement. The predicted acetabular cup sizes from these methods were compared with the actual implanted sizes.
RESULTS:
The predicted acetabular cup sizes using the preoperative template planning, radiographic FHD measurement, and intraoperative FHD measurement were (51.25±2.81), (49.72±3.11), and (49.90±2.74) mm, respectively, compared to the actual implanted cup size of (50.57±2.74) mm, with no significant difference ( P>0.05). Regarding agreement with the actual implanted cup size, the preoperative template planning achieved exact matches in 35 hips (43.75%), one-size deviation in 41 hips (51.25%), and two-size deviations in 4 hips (5%); the radiographic FHD measurement achieved exact matches in 12 hips (15%), one-size deviation in 57 hips (71.25%), and two-size deviations in 11 hips (13.75%); and the intraoperative FHD measurement achieved exact matches in 26 hips (32.5%), one-size deviation in 52 hips (65%), and two-size deviations in 2 hips (2.5%). There were significant differences in agreement distributions between the three methods and the actual implanted cup sizes ( H=18.579, P<0.001).
CONCLUSION
The intraoperative FHD measurement, as a simple, cost-effective, and accurate method, effectively guides acetabular cup selection, reduces the risk of prosthesis wear, enhances postoperative joint stability.
Humans
;
Arthroplasty, Replacement, Hip/instrumentation*
;
Male
;
Female
;
Middle Aged
;
Acetabulum/diagnostic imaging*
;
Aged
;
Hip Prosthesis
;
Prosthesis Design
;
Femur Head/surgery*
;
Osteoarthritis, Hip/surgery*
;
Radiography
;
Femoral Neck Fractures/surgery*
;
Femur Head Necrosis/surgery*
3.Inhibiting neddylation: A new strategy for tumor therapy.
Jian SUN ; Cui LIU ; Changhui LANG ; Jing WANG ; Qingxiang LI ; Chang PENG ; Zuochen DU ; Yan CHEN ; Pei HUANG
Journal of Pharmaceutical Analysis 2025;15(5):101140-101140
Neddylation is a crucial posttranslational modification that involves the attachment of neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to a lysine residue in the substrate via the sequential actions of the E1 NEDD8-activating enzyme (NAE) (E1), E2 NEDD8-conjugating enzyme (E2), and E3 NEDD8-ligase (E3). The most extensively studied substrates of neddylation are members of the cullin family, which act as scaffold components for cullin ring E3 ubiquitin ligases (CRLs). Since cullin neddylation activates CRLs, which are frequently overactive in tumors, inhibiting neddylation has emerged as a promising strategy for developing novel antitumor therapies. This review explores the antitumor effects of inhibiting neddylation that leads to the inactivation of CRLs and provides a summary of known inhibitors that target protein-protein interactions (PPIs) within the neddylation enzymatic cascade.
4.Discovery of fernane-type triterpenoids from Diaporthe discoidispora using genome mining and HSQC-based SMART technology.
Yajing WANG ; Yongfu LI ; Yan DONG ; Chunyan YU ; Chengwei LIU ; Chang LI ; Yi SUN ; Yuehu PEI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):368-376
In this study, we employed a combination of genome mining and heteronuclear single quantum coherence (HSQC)-based small molecule accurate recognition technology (SMART) technology to search for fernane-type triterpenoids. Initially, potential endophytic fungi were identified through genome mining. Subsequently, fine fractions containing various fernane-type triterpenoids were selected using HSQC data collection and SMART prediction. These triterpenoids were then obtained through targeted isolation and identification. Finally, their antifungal activity was evaluated. As a result, three fernane-type triterpenoids, including two novel compounds, along with two new sesquiterpenes and four known compounds were isolated from one potential strain, Diaporthe discoidispora. Their structures were elucidated through analysis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations were determined using single-crystal X-ray diffraction analysis and electron capture detector (ECD) analysis. Compound 3 exhibited moderate antifungal activity against Candida albicans CMCC 98001 and Aspergillus niger.
Triterpenes/isolation & purification*
;
Antifungal Agents/isolation & purification*
;
Molecular Structure
;
Candida albicans/drug effects*
;
Ascomycota/genetics*
;
Magnetic Resonance Spectroscopy
;
Aspergillus niger/drug effects*
;
Genome, Fungal
;
Microbial Sensitivity Tests
5.Association between Non-high-density Lipoprotein Cholesterol to High-density Lipoprotein Cholesterol Ratio (NHHR) and Stroke among Adults in the USA: A Cross-Sectional NHANES Study.
Hai Xia MA ; Hua Qiu CHEN ; Pei Chang WANG
Biomedical and Environmental Sciences 2025;38(1):37-46
OBJECTIVE:
The relationship between non-high-density lipoprotein (NHDL) cholesterol to high-density lipoprotein cholesterol (HDL-C) ratio (NHHR) and stoke remains unknown. This study aimed to evaluate the association between the adult NHHR and stroke occurrence in the United States of America (USA).
METHODS:
To clarify the relationship between the NHHR and stroke risk, this study used a multivariable logistic regression model and a restricted cubic spline (RCS) model to investigate the association between the NHHR and stroke, and data from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. Subgroup and sensitivity analyses were conducted to test the robustness of the results.
RESULTS:
This study included 29,928 adult participants, of which 1,165 participants had a history of stroke. Logistic regression analysis of variables demonstrated a positive association between NHHR and stroke ( OR 1.24, 95% CI: 1.03-1.50, P = 0.026). Compared with the lowest reference group of NHHR, participants in the second, third, and fourth quartile had a significantly increased risk of stroke after full adjustments ( OR: 1.35, 95% CI: 1.08-1.69) ( OR: 1.83, 95% CI: 1.42-2.36) ( OR: 2.04, 95% CI: 1.50-2.79). In the total population, a nonlinear dose-response relationship was observed between the NHHR and stroke risk ( P non-linearity = 0.002). This association remained significant in several subgroup analyses. Further investigation of the NHHR may enhance our understanding of stroke prevention and treatment.
CONCLUSION
Our findings suggest a positive correlation between the NHHR and an increased prevalence of stroke, potentially serving as a novel predictive factor for stroke. Timely intervention and management of the NHHR may effectively mitigate stroke occurrence. Prospective studies are required to validate this association and further explore the underlying biological mechanisms.
Humans
;
Stroke/blood*
;
United States/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Cross-Sectional Studies
;
Nutrition Surveys
;
Adult
;
Aged
;
Cholesterol, HDL/blood*
;
Cholesterol/blood*
;
Risk Factors
6.Synaptic Vesicle Glycoprotein 2A Slows down Amyloidogenic Processing of Amyloid Precursor Protein via Regulating Its Intracellular Trafficking.
Qian ZHANG ; Xiao Ling WANG ; Yu Li HOU ; Jing Jing ZHANG ; Cong Cong LIU ; Xiao Min ZHANG ; Ya Qi WANG ; Yu Jian FAN ; Jun Ting LIU ; Jing LIU ; Qiao SONG ; Pei Chang WANG
Biomedical and Environmental Sciences 2025;38(5):607-624
OBJECTIVE:
To reveal the effects and potential mechanisms by which synaptic vesicle glycoprotein 2A (SV2A) influences the distribution of amyloid precursor protein (APP) in the trans-Golgi network (TGN), endolysosomal system, and cell membranes and to reveal the effects of SV2A on APP amyloid degradation.
METHODS:
Colocalization analysis of APP with specific tagged proteins in the TGN, ensolysosomal system, and cell membrane was performed to explore the effects of SV2A on the intracellular transport of APP. APP, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expressions, and APP cleavage products levels were investigated to observe the effects of SV2A on APP amyloidogenic processing.
RESULTS:
APP localization was reduced in the TGN, early endosomes, late endosomes, and lysosomes, whereas it was increased in the recycling endosomes and cell membrane of SV2A-overexpressed neurons. Moreover, Arl5b (ADP-ribosylation factor 5b), a protein responsible for transporting APP from the TGN to early endosomes, was upregulated by SV2A. SV2A overexpression also decreased APP transport from the cell membrane to early endosomes by downregulating APP endocytosis. In addition, products of APP amyloid degradation, including sAPPβ, Aβ 1-42, and Aβ 1-40, were decreased in SV2A-overexpressed cells.
CONCLUSION
These results demonstrated that SV2A promotes APP transport from the TGN to early endosomes by upregulating Arl5b and promoting APP transport from early endosomes to recycling endosomes-cell membrane pathway, which slows APP amyloid degradation.
Amyloid beta-Protein Precursor/genetics*
;
Membrane Glycoproteins/genetics*
;
Animals
;
Protein Transport
;
Nerve Tissue Proteins/genetics*
;
Humans
;
Mice
;
Endosomes/metabolism*
;
trans-Golgi Network/metabolism*
8.Preparation,characterization and in vitro anti-inflammatory activity of tetrandrine-loaded chitosan-stearic acid nano micelles modified with folic acid
Fei XUE ; Lan YANG ; Jinhua CHANG ; Pei LIU ; Ruxing WANG
China Pharmacy 2024;35(8):925-930
OBJECTIVE To prepare tetrandrine (TET)-loaded chitosan(CS)-stearic acid (SA) nano micelles modified with folic acid (FA)( FA-CS-SA/TET nano micelles), characterize them and study the anti-inflammatory effect in vitro. METHODS FA- CS-SA/TET nano micelles were prepared by ultrasonic method; the preparation technology was optimized by orthogonal test and validation test was also performed with the mass ratio of FA-CS-SA to TET, ultrasound power and ultrasound times as the factors, using the comprehensive score of entrapment efficiency (EE), drug loading (DL) and particle size as evaluation index. FA-CS-SA/ TET nano micelles prepared by the optimal technology were characterized, and their release performance in vitro was investigated. RAW264.7 cells were used as subjects to investigate their anti-inflammatory activity in vitro. RESULTS The optimal preparation technology included that the mass ratio of FA-CS-SA to TET was 2∶1, ultrasonic power was 200 W, and the ultrasonic frequency was 200 times. The parameters of FA-CS-SA/TET nano micelles prepared by optimized technology included that EE was (98.86± 0.30)%, DL was (28.57±0.34)%, the average particle size was (227.0±9.4) nm, polydispersity index was 0.42±0.04, and the Zeta potential was(12.6±2.3)mV, respectively. The nano micelles were uniform in appearance and round in shape. The nano micelles were released quickly in 0.5% sodium dodecyl sulfate solution, with a cumulative release rate of (79.49±3.43)% within 72 hours, and its anti-inflammatory effect was stronger than that of TET raw materials. CONCLUSIONS FA-CS-SA/TET nano micelles are prepared successfully in the study, with good drug loading performance, uniform particle size, and good in vitro anti-inflammatory activity.
9.Screening and Functional Analysis of BACE1 Interacting Proteins in Alzheimer’s Disease
Cong-Cong LIU ; Ya-Qi WANG ; Pei-Chang WANG
Progress in Biochemistry and Biophysics 2024;51(8):1904-1919
Objectiveβ‑Site APP cleaving enzyme 1 (BACE1) is a rate-limiting enzyme involved in the formation of amyloid plaques in Alzheimer’s disease (AD), and its expression and activity play a crucial role in the development of AD. The interacting protein of BACE1 can directly or indirectly regulate BACE1 in the transcription, translation, modification, intracellular transport and other links of BACE1 by directly binding, indirectly binding, and participating in various cell signal transduction pathways, so as to participate in the occurrence of AD and the process of disease. This study aimed to screen and validate the interacting proteins of BACE1, providing new insights into the mechanisms of amyloid plaque formation. MethodsCo-immunoprecipitation (Co-IP) and mass spectrometry (MS) were used to enrich and identify BACE1 interacting proteins in the hippocampus of wild type (WT) mice and AD model mice. For candidate BACE1 interacting proteins, GO enrichment analysis and KEGG pathway enrichment analysis were used to explore the subcellular localization, molecular function, participating biological processes and participating signaling pathways of BACE1 interacting proteins. The protein-protein interaction (PPI) network of BACE1 was further constructed to explore the potential proteins interacting with BACE1. By searching the mouse genomeinformation (MGI) website and NCBI database, the more reliable proteins among the potential BACE1 interacting proteins were screened. Co-IP assay and immunofluorescence confocal technology were used to preliminarily verify the interaction between the proteins, and the changes in protein expression levels of the interacting proteins in AD cell models were explored. ResultsA total of 614 differentially expressed proteins interacting with BACE1 were identified in AD group. GO enrichment analysis showed that the BACE1 interacting proteins in the AD group were mainly located in membrane organelles such as Golgi apparatus, endoplasmic reticulum, endosome, lysosome and vesicles, which had molecular functions such as ion channel regulation, protein kinase activity, transcription factor binding and passive transmembrane transporter activity. It is mainly involved in the biological processes of immune response regulation cell surface receptor signaling pathway, targeting Golgi vesicles transport, circadian rhythm regulation, Purkinje cell layer development, etc. KEGG analysis showed that BACE1 interacting proteins in AD were mainly involved in the PI3K-Akt signaling pathway, mTOR signaling pathway and other neurodegenerative disease-related pathways. The PPI network of BACE1 showed that a total of 12 proteins were identified as high confidence binding proteins, including PRNP, APOE, SYP, NSF, NUMB, SNAP91, HSP90aa1, UCHL1, BIN1, SNX27, Rheb, Ap2m1, of which, NSF, NUMB, SNAP91, HSP90aa1 were newly identified candidate proteins. After further verification, we found that NSF not only interacts with BACE1, but also interacts with amyloid precursor protein (APP), the substrate of BACE1, and the expression level of NSF is up-regulated in the AD cell model constructed by Aβ42 induction. ConclusionBACE1 binding proteins participate in multiple AD-associated biological processes and signal pathways. NSF is a newly identified BACE1 binding protein that interacts with BACE1, and the protein expression level of NSF is up-regulated in the AD cell model. It is predicted that the interaction between NSF and BACE1 is involved in regulating the course of AD, providing a new target and direction for the study of the mechanism of AD.
10.Biological scaffold materials and printing technology for repairing bone defects
Xiangyu KONG ; Xing WANG ; Zhiwei PEI ; Jiale CHANG ; Siqin LI ; Ting HAO ; Wanxiong HE ; Baoxin ZHANG ; Yanfei JIA
Chinese Journal of Tissue Engineering Research 2024;28(3):479-485
BACKGROUND:In recent years,with the development of biological scaffold materials and bioprinting technology,tissue-engineered bone has become a research hotspot in bone defect repair. OBJECTIVE:To summarize the current treatment methods for bone defects,summarize the biomaterials and bioprinting technology for preparing tissue-engineered bone scaffolds,and explore the application of biomaterials and printing technology in tissue engineering and the current challenges. METHODS:Search terms were"bone defect,tissue engineering,biomaterials,3D printing technology,4D printing technology,bioprinting,biological scaffold,bone repair"in Chinese and English.Relevant documents published from January 1,2009 to December 1,2022 were retrieved on CNKI,PubMed and Web of Science databases.After being screened by the first author,high-quality references were added.A total of 93 articles were included for review. RESULTS AND CONCLUSION:The main treatment methods for bone defects include bone transplantation,membrane-guided regeneration,gene therapy,bone tissue engineering,etc.The best treatment method is still uncertain.Bone tissue engineering technology is a new technology for the treatment of bone defects.It has become the focus of current research by constructing three-dimensional structures that can promote the proliferation and differentiation of osteoblasts and enhance the ability of bone formation.Biological scaffold materials are diverse,with their characteristics,advantages and disadvantages.A single biological material cannot meet the demand for tissue-engineered bone for the scaffold.Usually,multiple materials are combined to complement each other,which is to meet the demand for mechanical properties while taking into account the biological properties of the scaffold.Bioprinting technology can adjust the pore of the scaffold,build a complex spatial structure,and is more conducive to cell adhesion,proliferation and differentiation.The emerging 4D printing technology introduces"time"as the fourth dimension to make the prepared scaffold dynamic.With the synchronous development of smart materials,4D printing technology provides the possibility of efficient repair of bone defects in the future.

Result Analysis
Print
Save
E-mail