1.Mechanism of inhibiting miR-34a-5p expression and promoting bone growth in mouse brain tissue by Semen Ziziphi Spinosae extract.
Yuan-Yuan PEI ; Yan XIE ; Na YIN ; Wen-Long MA ; Wei-Peng XING ; Gui-Zhi WANG ; Qing-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(10):1061-1070
OBJECTIVE:
To explore the mechanism by which the extract of Semen Ziziphi Spinosae extract promotes bone growth in mice by modulation of the expression of miR-34a-5p in brain tissue.
METHODS:
Mice were assigned to four experimental groups:a normal control group, a drug administration group (receiving 0.320 mg·g-1 body weight of Semen Ziziphi Spinosae extract via intragastric administration), a positive control group (receiving 0.013 mg·g-1 body weight of jujube seed saponin via intragastric administration), and a combination group administration with Semen Ziziphi Spinosae extract plus a 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist (intragastric administration of Semen Ziziphi Spinosae extract combined with intracerebroventricular injection of 8 μg P-MPPF per mice for the final three days of the experiment). Following a 20-day administration period, the effects of the interventions on bone growth, serum growth hormone (GH) levels, and 5-HT2AR expression in brain tissue were evaluated. MicroRNAs (miRNAs) that were differentially expressed in the brain tissues of mice exhibiting bone growth induced by Semen Ziziphi Spinosae extract, as compared to those in normal mice, were identified using a gene chip approach. The interaction between miR-34a-5p and 5-HT2AR was subsequently validated through quantitative reverse transcription polymerase chainreaction (RT-qPCR) and dual-luciferase reporter gene assays. Subsequently, by utilizing the miR-34a-5p inhibitor group and mimics group, along with the normal control group, the drug administration group, the positive control group, and the drug administration combined with miR-34a-5p inhibitor group, the variations in 5-HT2AR expression in mouse brain tissue across all groups were examined, and the binding activity of 5-hydroxytryptamine (5-HT) to the 5-hydroxytryptamine 1A receptor (5-HT1AR) in mice was assessed.
RESULTS:
The body lengths of the normal control group and the drug administration group were(8.9±0.3) and(10.4±0.4) cm;femur lengths were (8.5±0.3) and (9.1±0.5) mm;tibia lengths were (10.7±0.3) and (11.2±0.4) mm, respectively. The contents of GH levels were (58.6±8.2) and (72.9±6.1) ng·ml-1;and the contents of 5-HT2AR were (32.0±5.0) and (21.9± 5.5) ng·ml-1, respectively. Compared with the normal control group, the drug administration group promoted the growth of body length, femur, and tibia in mice, and increased GH secretion, showing statistically significant differences (P<0.05). Additionally, it significantly reduced the content of 5-HT2AR in brain tissue, with statistical significance (P<0.01). The gene chip analysis identified a total of 16 differentially expressed miRNAs, of which 13 were up-regulated and 3 were down-regulated. Bioinformatics analysis predicted that the up-regulated miR-34a-5p could regulate the expression of 5-HT2AR, a prediction that was confirmed through a dual-luciferase reporter gene assay, demonstrating a direct regulatory interaction between the two. Furthermore, in vivo experiments in mice revealed that overexpression and silencing of miR-34a-5p resulted in corresponding changes in the expression levels of 5-HT2AR in brain tissues/cells, as well as in the binding activity between 5-HT and 5-HT1AR.
CONCLUSION
The Semen Ziziphi Spinosae extract promotes animal bone growth by enhancing miR-34a-5p expression in brain tissue, downregulating the expression level of 5-HT2AR, improving the binding activity between 5-HT and 5-HT1AR, and extending slow-wave sleep duration, thereby stimulating GH secretion.
Animals
;
MicroRNAs/metabolism*
;
Mice
;
Male
;
Brain/metabolism*
;
Ziziphus/chemistry*
;
Bone Development/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Plant Extracts/pharmacology*
2.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
3.Expression and mechanism of N6-methyladenosine methylation-related factors in the repair of skeletal muscle injury in mice
Jia-Yin LU ; Zhi-Chao YAO ; Xiao-Jing HAO ; Yi YAN ; Pei MA ; Hui-Ling ZHANG ; Hai-Dong WANG
Acta Anatomica Sinica 2024;55(3):285-294
Objective To investigate the dynamic expression with the time change of N6-methyladenosine(m6A)methylation-related factors in the repair process of skeletal muscle injury and its mechanism in the inflammatory response of macrophage in the injure process.Methods In vivo mice models of BaCl2 injury in the gastrocnemius were established.Four mice per group in the control group and injury group.Gastrocnemius tissues were harvested at day 1,3,5,7,and 9 after injury for experiments.Primary gastrocnemius muscle tissue cells,muscle satellite cells,muscle cells,and cell line C2C12 cells were treated with dexamethasone(DEX,50 μmol/L)to mimic injury.Lipopolysaccharide(LPS,100 μg/L)induced RAW264.7 cell lines to mimic the inflammatory response after skeletal muscle injury,and STM2457(30 μmol/L)was added to inhibit the effect of methyltransferase 3(Mettl3)before LPS treatment.The expression of m6A methylation-related factors(Writers,Erasers,Readers)and inflammation factors were detected by Real-time PCR and Western blotting.Results The muscle fibers were dissolved and then gradually repaired with the extension of injury time,the number of monocytes/macrophages increased first and then decreased,and the Pax7 mRNA level increased first and then decreased with the change of injury time.Compared with the control group,the mRNA and protein levels of m6A methylation-related factors in gastrocnemius did not change significantly on the injury-1 day.However,they were significantly increased on the injury-3 days compared with the control group(P<0.05),and then obviously decreased on the injury-5 days group compared with the injury-3 days group(P<0.05).Compared with the control group,they were no significant differences on the injury-7 days group and-9 days group.In vitro DEX decreased the mRNA levels of m6A methyltransferase factors in primary muscle satellite cells and C2C12 cells and increased the mRNA expression level of methylation-recognition enzyme factors(P<0.05).The mRNA levels of m6A methylation-related factors increased significantly in skeletal muscle tissue cells and myocytes after DEX treatment(P<0.05).After LPS treatment,the mRNA and protein expression levels of m6A methylation-related factors and the mRNA expression levels of inflammatory factors interleukin(IL)-6 and IL-1β in macrophages increased significantly(P<0.05),while the levels of IL-6 and IL-1β mRNA in macrophages decreased significantly when the Mettl3 was inhibited(P<0.05).Conclusion m6A methylation-related factors primarily is activated in the damaged muscle cells and inflammation response of macrophages.Inhibition of m6A methyltransferase can reduce the inflammatory response of macrophages.
4.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
5.Protective Effects of Danmu Extract Syrup on Acute Lung Injury Induced by Lipopolysaccharide in Mice through Endothelial Barrier Repair.
Han XU ; Si-Cong XU ; Li-Yan LI ; Yu-Huang WU ; Yin-Feng TAN ; Long CHEN ; Pei LIU ; Chang-Fu LIANG ; Xiao-Ning HE ; Yong-Hui LI
Chinese journal of integrative medicine 2024;30(3):243-250
OBJECTIVE:
To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.
METHODS:
Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.
RESULTS:
DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).
CONCLUSIONS
DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.
Mice
;
Male
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Lipopolysaccharides
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Interleukin-1beta/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Claudin-5/metabolism*
;
Acute Lung Injury/chemically induced*
;
Lung/pathology*
;
Interleukin-6/metabolism*
;
Drugs, Chinese Herbal
6. Inhibition of HSP70 release by geniposide improves angiogenesis in moist heat arthralgia spasm syndrome collagen induced arthritis rats
Yin SHU ; Pei-Rong GAN ; Yan WANG ; Yan-Hong BU ; Hong WU
Chinese Pharmacological Bulletin 2024;40(2):324-334
Aim To investigate the relation between the effect of geniposide (GE) in improving angiogenesis in arthralgia spasm syndrome collagen induced arthritis (CIA) rats and the modulation of heat shock proteins 70 (HSP70) release. Methods A CIA model was constructed by multiple intradermal injections of complete Freund's adjuvant (CFA) and an equal volume mixture of chicken type II collagen (CCII) into the dorsal and caudal root regions of rats, on the basis of which a rheumatic fever stimulus was given to build up a moist heat arthralgia spasm syndrome in CIA rats. After successful modeling, the groups were randomly grouped, and the administered groups were gavaged with GE (60, 120 mg · kg
7.Clinical relevance of distolingual roots and periodontal status in mandibular first molars:a cross-sectional study employing CBCT analysis
MAO FEIFEI ; WANG MENG ; ZHOU SHUAI ; ZHAO YAN ; HUANG JIAPING ; YIN FENGYING ; YANG HAIPING ; DING PEI-HUI
Journal of Zhejiang University. Science. B 2024;25(3):244-253,中插11
Objectives:Distolingual root of the permanent mandibular first molar(PMFM-DLR)has been frequently reported,which may complicate the treatment of periodontitis.This study aimed to assess the morphological features of PMFM-DLR and investigate the correlation between the morphological features of PMFM-DLR and periodontal status in patients with Eastern Chinese ethnic background.Materials and methods:A total of 836 cone beam computed tomography(CBCT)images with 1497 mandibular first molars were analyzed to observe the prevalence of PMFM-DLR at the patients and tooth levels in Eastern China.Among them,complete periodontal charts were available for 69 Chinese patients with 103 teeth.Correlation and regression analyses were used to evaluate the correlation between the morphological features of DLR,bone loss,and periodontal clinical parameters,including clinical attachment loss(CAL),probing pocket depth(PPD),gingival recession(GR),and furcation involvement(FI).Results:The patient-level prevalence and tooth-level prevalence of DLR in mandibular first molars were 29.4%and 26.3%,respectively.Multiple linear regression analysis suggested that bone loss at the lingual site and CAL were negatively affected by the angle of separation between distolingual and mesial roots in the transverse section,while they were significantly influenced by age and the angle of separation between distobuccal and mesial roots in the coronal section.Conclusions:The prevalence of PMFM-DLR in Eastern China was relatively high in our cohort.The morphological features of DLR were correlated with the periodontal status of mandibular first molars.This study provides critical information on the morphological features of DLR for improved diagnosis and treatment options of mandibular molars with DLR.
8.MoS2 nanozyme attenuated inflammation-related endothelial cell injury by regulating mitochondrial dynamics and mitophagy
Dong-mei PAN ; Sun-kui KE ; Qian-hao YIN ; Pei-yan YANG ; Chao LI ; She-fang YE
Acta Pharmaceutica Sinica 2024;59(10):2791-2799
To explore the protective mechanisms of a novel molybdenum disulfide (MoS2) nanozyme in alleviating inflammation-related endothelial cell injury by regulating mitochondrial dynamic, flower like-MoS2 nanosheets were prepared by hydrothermal method, and its antioxidant enzyme-mimic activities were assessed
9.Morphological classification and molecular identification of Hyalomma asiaticum in parts of Xindi Township,Xinjiang
Xiao-Qing ZAN ; Qiao-Yun REN ; Jin LUO ; Yan-Long WANG ; Pei-Wen DIAO ; Li-Yan CHE ; Jian-Xun LUO ; Hong YIN ; Gui-Quan GUAN ; Guang-Yuan LIU ; Hong-Xi ZHAO
Chinese Journal of Zoonoses 2024;40(4):289-294
The purpose of this study was to identify the tick species native to Xindi Township,Yumin County,Xinjiang,China.Preliminary morphological identification of parasitic ticks collected from animals in the area was conducted with an ultra-depth of field three-dimensional VHX 600 digital stereo microscope.Total DNA of the ticks was extracted,amplified by PCR based on the COI and ITS2 gene loci,and the posi-tive PCR products were sequenced.The sequence were a-ligned with reference sequences from the NCBI database were aligned with the Basic Local Alignment Search Tool.A genet-ic phylogenetic tree was generated with the neighbor-joining method of MEGA 7.0 software to determine the evolutionary biological characteristics of ticks.Morphological identification showed that the ticks collected from Xindi Township of Yu-min County were consistent with the characteristics of Hya-lomma asiaticum.An evolutionary tree based on the COI and ITS2 gene sequences showed that the ticks collected in this study were clustered with known H.asiaticum sequences.The PCR products of COI and ITS2 were sequenced and compared,which confirmed that the collected tick species were H.asiaticum,in agreement with the morphological and molecular biological results.These findings help to clarify the distribution of ticks in Xindi Township of Xinjiang,and provide basic data for the analysis of tick genetic and evolutionary characteristics,as reference for surveillance and control of ticks in the Xinjiang Uygur Autonomous Region.
10.Establishment and Evaluation Strategy of an in Vitro Cell Model of Bone Marrow Microenvironment Injury in Mouse Acute Graft-Versus-Host Disease
Jia-Yi TIAN ; Pei-Lin LI ; Jie TANG ; Run-Xiang XU ; Bo-Feng YIN ; Fei-Yan WANG ; Xiao-Tong LI ; Hong-Mei NING ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2024;32(2):617-624
Objective:To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease(aGVHD).Methods:Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors,and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients.The recipient mouse received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1× 107/mouse)in 6-8 hours post irradiation to establish a bone marrow transplantation(BMT)mouse model(n=20).In addition,the recipient mice received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1 × 107/mouse)and spleen lymphocytes(2 × 106/mouse)in 6-8 hours post irradiation to establish a mouse aGVHD model(n=20).On the day 7 after modeling,the recipient mice were anesthetized and the blood was harvested post eyeball enucleation.The serum was collected by centrifugation.Mouse MSCs were isolated and cultured with the addition of 2%,5%,and 10%recipient serum from BMT group or aGVHD group respectively.The colony-forming unit-fibroblast(CFU-F)experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC.The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining.In addition,the expression of self-renewal-related genes including Oct-4,Sox-2,and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR).Results:We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD.CFU-F assay showed that,on day 7 after the culture,compared with the BMT group,MSC colony formation ability of aGVHD serum concentrations groups of 2%and 5%was significantly reduced(P<0.05);after the culture,at day 14,compared with the BMT group,MSC colony formation ability in different aGVHD serum concentration was significantly reduced(P<0.05).The immunofluorescence staining showed that,compared with the BMT group,the proportion of MSC surface molecules CD29+and CD 105+cells was significantly dereased in the aGVHD serum concentration group(P<0.05),the most significant difference was at a serum concentration of 10%(P<0.001,P<0.01).The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4,Sox-2,and Nanog was decreased,the most significant difference was observed at an aGVHD serum concentration of 10%(P<0.01,P<0.001,P<0.001).Conclusion:By co-culturing different concentrations of mouse aGVHD serum and mouse MSC,we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability,which providing a new tool for the field of aGVHD bone marrow microenvironment damage.

Result Analysis
Print
Save
E-mail