1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
5.Expression and prognostic value of triggering receptor expressed on myeloid cells-1 in patients with cirrhotic ascites and intra-abdominal infection
Feng WEI ; Xinyan YUE ; Xiling LIU ; Huimin YAN ; Lin LIN ; Tao HUANG ; Yantao PEI ; Shixiang SHAO ; Erhei DAI ; Wenfang YUAN
Journal of Clinical Hepatology 2025;41(5):914-920
ObjectiveTo analyze the expression level of triggering receptor expressed on myeloid cells-1 (TREM-1) in serum and ascites of patients with cirrhotic ascites, and to investigate its correlation with clinical features and inflammatory markers and its role in the diagnosis of infection and prognostic evaluation. MethodsA total of 110 patients with cirrhotic ascites who were hospitalized in The Fifth Hospital of Shijiazhuang from January 2019 to December 2020 were enrolled, and according to the presence or absence of intra-abdominal infection, they were divided into infection group with 72 patients and non-infection group with 38 patients. The patients with infection were further divided into improvement group with 38 patients and non-improvement group with 34 patients. Clinical data and laboratory markers were collected from all patients. Serum and ascites samples were collected, and ELISA was used to measure the level of TREM-1. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups, and the Kruskal-Wallis H test was used for comparison between multiple groups; the chi-square test was used for comparison of categorical data between two groups. A Spearman correlation analysis was used to investigate the correlation between indicators. A multivariate Logistic regression analysis was used to identify the influencing factors for the prognosis of patients with cirrhotic ascites and infection. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic and prognostic efficacy of each indicator, and the Delong test was used for comparison of the area under the ROC curve (AUC). ResultsThe level of TREM-1 in ascites was significantly positively correlated with that in serum (r=0.50, P<0.001). Compared with the improvement group, the non-improvement group had a significantly higher level of TREM-1 in ascites (Z=-2.391, P=0.017) and serum (Z=-2.544, P=0.011), and compared with the non-infection group, the infection group had a significantly higher level of TREM-1 in ascites (Z=-3.420, P<0.001), while there was no significant difference in the level of TREM-1 in serum between the two groups (P>0.05). The level of TREM-1 in serum and ascites were significantly positively correlated with C-reactive protein (CRP), procalcitonin (PCT), white blood cell count, and neutrophil-lymphocyte ratio (r=0.288, 0.344, 0.530, 0.510, 0.534, 0.454, 0.330, and 0.404, all P<0.05). The ROC curve analysis showed that when PCT, CRP, and serum or ascitic TREM-1 were used in combination for the diagnosis of cirrhotic ascites with infection, the AUCs were 0.715 and 0.740, respectively. The multivariate Logistic regression analysis showed that CRP (odds ratio [OR]=1.019, 95% confidence interval [CI]: 1.001 — 1.038, P=0.043) and serum TREM-1 (OR=1.002, 95%CI: 1.000 — 1.003, P=0.016) were independent risk factors for the prognosis of patients with cirrhotic ascites and infection, and the combination of these two indicators had an AUC of 0.728 in predicting poor prognosis. ConclusionThe level of TREM-1 is closely associated with the severity of infection and prognosis in patients with cirrhotic ascites, and combined measurement of TREM-1 and CRP/PCT can improve the diagnostic accuracy of infection and provide support for prognostic evaluation.
6.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
7.Vanillin down-regulates cGAS/STING signaling pathway to improve liver tissue injury in rats with intrahepatic cholestasis
Ning JIANG ; Lan-Xiang PU ; Feng HUANG ; Yan WANG ; Xin PEI ; Jun-Ya SONG ; En-Sheng ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1695-1700
Aim To investigate the effect of vanillin on the regulation of cyclic guanylate adenylate synthetase(cGAS)/stimulator of interferon gene(STING)signa-ling pathway on hepatic tissue injury in rats with intra-hepatic cholestasis(IC).Methods SD rats were randomly divided into normal group,IC group,vanillin group,cGAS overexpression group,and vanillin+cGAS overexpression group,with continuous adminis-tration for seven days.The body weight,liver weight and liver to body weight ratio of rats were measured.Liver function(ALT,AST,ALP,LDH),IC(TBIL,TBA)and liver fibrosis(HA,LN,PC Ⅲ)index were determined by ELISA.Liver pathology and fibrosis were observed using HE and Masson staining,and col-lagen volume fraction was calculated.The expression of cGAS/STING pathway related proteins in liver tissue was detected by Western blot.Results Vanillin could improve liver pathology and fibrosis,increase body weight,and decrease liver weight,ALT,AST,ALP,LDH,TBIL,TBA,HA,LN,PC Ⅲ,collagen volume fraction,cGAS,STING protein in IC rats(P<0.05).Overexpression of cGAS could reverse the effects of vanillin on the above indicators in IC rats(P<0.05).Conclusions Vanillin may improve liver function,IC,liver fibrosis,and liver tissue damage in IC rats by downregulating the cGAS/STING signaling pathway.
8.A QCM Biosensor for Screening Arsenic(Ⅲ)Aptamers and Detecting Arsenic(Ⅲ)
Chu-Jun ZHENG ; Shi-Quan QIAN ; Xin-Pei LI ; Xu YAN ; Hai-Xuan HUANG ; Yu-Xuan WANG ; Yu-Wei YE ; Min YUAN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(9):1282-1288
A quartz crystal microbalance(QCM)-systematic evolution of ligands by the exponential en-richment(SELEX)technique was developed to screen out aptamers with high affinity for arsenic(Ⅲ).A random single strand DNA library was designed and fixed on the mercaptoethylamine-modified crystal plate with arsenic(Ⅲ)as the target,and the free aptamer was captured in the solution,and the QCM-SELEX screening method was constructed.After 6 rounds of screening,the secondary library was se-quenced with high throughput method,and the 6S1 dissociation coefficient Kd value was 0.36 μmol/L based on QCM resonance frequency.Using 6S1 as a probe,the QCM biosensor was constructed for the detection of arsenic(Ⅲ).The sensor has a good linear relationship in the range of 0.01 μmol/L~0.2μmol/L,and the detection limit of arsenic(Ⅲ)is 5.2 nmol/L(3σ),indicatinggood selectivity.
9.Establishment and assessment of a visual detection method for nucleic acid of Afri-can swine fever virus
Xingqi LIU ; Yujie BAI ; Mengyao ZHANG ; Jingbo HUANG ; Guangliang LIU ; Yuanyuan LI ; Shuyi TAN ; Haili ZHANG ; Yan ZHANG ; Zongxi CAO ; Hualei WANG ; Pei HUANG
Chinese Journal of Veterinary Science 2024;44(8):1585-1592
African swine fever(ASF),caused by the African swine fever virus(ASFV),is a highly contagious infectious disease of pigs.This disease has been spread rapidly in China since 2018,po-sing a huge threat to China's pig farming industry.To rapid detect the ASFV,a loop-mediated iso-thermal amplification(LAMP)combined with the disposable nucleic acid visualization test strip was established for visual detection of the nucleic acid of ASFV B646L gene.The method was easy to operate without special instruments and equipment,while it effectively avoided the disadvantage of false positives caused by aerosol contamination.The method was able to detect 1.16 copies/μL of the recombinant plasmid in 50 min at 65 ℃.In addition,the method was specific with no cross-re-action with classical swine fever virus,porcine reproductive and respiratory syndrome virus,por-cine parvovirus,transmissible gastroenteritis virus.The results in this study provides a rapid,con-venient,sensitive and reliable method for early diagnosis and screening for ASFV suspected infec-tion cases.
10.Expression of severe fever with thrombocytopenia syndrome virus Gn-D Ⅲ-Ⅲ and development of indirect ELISA for antibody detection
Mengyao ZHANG ; Tianlai LIANG ; Feihu YAN ; Tao CHEN ; Cuicui JIAO ; Hongli JIN ; Jiaoyan LUAN ; Xiao WU ; Pei HUANG ; Haili ZHANG ; Qin NING ; Hualei WANG ; Yuanyuan LI
Chinese Journal of Veterinary Science 2024;44(8):1704-1712
The PCR-amplified severe fever with thrombocytopenia syndrome virus(SFTSV)Gn-DⅢ-Ⅲ gene was inserted into the pET-30a(+)prokaryotic expression vector to generate the re-combinant plasmid pET-SFTSV-Gn-D Ⅲ-Ⅲ.The plasmid was transformed into E.coli BL21(DE3)for Gn-DⅢ-m protein expression and the expression conditions were optimized.The Gn-DⅢ-Ⅲ protein purified with Ni-NTA column affinity chromatography was applied as the captured antigen to establish an indirect ELISA method for the detection of SFTSV antibody.The results demonstrated that the recombinant plasmid pET-SFTSV-Gn-D Ⅲ-Ⅲ was successfully constructed as identified by PCR and sequencing.The recombinant protein SFTSV Gn-D m-Ⅲ was soluble ex-pression in E.coli under the optimal induction conditions of 0.4 mmol/L IPTG at 25 ℃ for 4 h,and the protein purity was 91.77%after purification by Ni-NTA column.The optimal reaction con-ditions for the indirect ELISA of SFTSV antibody were as follows:coating antigen concentration(5 μg/mL),primary antibody(incubation at 37 ℃ for 1.5 h),and secondary antibody(diluted 1:10 000 and incubated at 37 ℃ for 1 h).The established method had no cross-reactivity with Rift Valley fever virus(RVFV),Ebola virus(EBOV),and tick-borne encephalitis virus(TBEV)posi-tive sera.The method had a high sensitivity,with P/N>2.1 for SFTSV-positive sera diluted to 81920.Coefficients of variation for intra-and inter-batch reactions were less than 10%.Detection of four SFTSV-infected human clinical serum samples showed the serum samples from patients in re-mission were tested as positive(P/N>2.1),while serum samples from patients with multiple or-gan failure were detected as negative(P/N<2.1).The results indicated that the SFTSV Gn-D Ⅲ-Ⅲ protein was successfully expressed and purified,and it was used as the coating protein to estab-lish an indirect ELISA assay for SFTSV antibody,which possesses good specificity,sensitivity and reproducibility.This method might be applied to detect human SFTSV clinical serum samples.

Result Analysis
Print
Save
E-mail