1.Outcomes of identifying enlarged vestibular aqueduct (Mondini malformation) related gene mutation in Mongolian people
Jargalkhuu E ; Tserendulam B ; Maralgoo J ; Zaya M ; Enkhtuya B ; Ulzii B ; Ynjinlhkam E ; Chuluun-Erdene Ts ; Chen-Chi Wu ; Cheng-Yu Tsai ; Yin-Hung Lin ; Yi-Hsin Lin ; Yen-Hui Chan ; Chuan-Jen Hsu ; Wei-Chung Hsu ; Pei-Lung Chen
Mongolian Journal of Health Sciences 2025;87(3):8-15
Background:
Hearing loss (HL) is one of the most common sensory disorders,
affecting over 5-8% of the world's population. Approximately half of HL cases are
attributed to genetic factors. In hereditary deafness, about 75-80% is inherited
through autosomal recessive inheritance, and common pathogenic genes include
GJB2 and SLC26A4. Pathogenic variants in the SLC26A4gene are the leading
cause of hereditary hearing loss in humans, second only to the GJB2 gene. Variants in the SLC26A4gene cause hearing loss, which can be non-syndromic autosomal recessive deafness (DFNB4, OMIM #600791) associated with enlarged
vestibular aqueduct (EVA) or Pendred syndrome (Pendred, OMIM #605646).
DFNB4 is characterized by sensorineural hearing loss combined with EVA or less
common cochlear malformation defect. Pendred syndrome is characterized by bilateral sensorineural hearing loss with EVA and an iodine defect that can lead to
thyroid goiter. Currently, it is known that EVA is associated with variants in the
SLC26A4 gene and is a penetrant feature of SLC26A4-related HL. Predominant
mutations in these genes differ significantly across populations. For instance, predominant SLC26A4 mutations differ among populations, including p.T416P and
c.1001G>A in Caucasians, p.H723R in Japanese and Koreans, and c.919-2A>G
in Han Taiwanese and Han Chinese. On the other hand, there has been no study
of hearing loss related to SLC26A4 gene variants among Mongolians, which is the
basis of our research.
Aim:
We aimed to identify the characteristics of the SLC26A4 gene variants in
Mongolian people with Enlarged vestibular aqueduct and Mondini malformation.
Materials and Methods:
In 2022-2024, We included 13 people with hearing loss
and enlarged vestibular aqueduct, incomplete cochlea (1.5 turns of the cochlea
with cystic apex- incomplete partition type II- Mondini malformation) were examined by CT scan of the temporal bone in our study. WES (Whole exome sequencing) analysis was performed in the Genetics genetic-laboratory of the National
Taiwan University Hospital.
Results:
Genetic analysis revealed 26 confirmed pathogenic variants of bi-allelic
SLC26A4 gene of 8 different types in 13 cases, and c.919-2A>G variant was dominant with 46% (12/26) in allele frequency, and c.2027T>A (p.L676Q) variant 19%
(5/26), c.1318A>T(p.K440X) variant 11% (3/26), c.1229C>T (p.T410M) variant 8%
(2/26) ) , c.716T>A (p.V239D), c.281C>T (p.T94I), c.1546dupC, and c.1975G>C
(p.V659L) variants were each 4% (1/26)- revealed. Two male children, 11 years
old (SLC26A4: c.919-2A>G) and 7 years old (SLC26A4: c.919-2A>G:, SLC26A4:
c.2027T>A (p.L676Q))had history of born normal hearing and progressive hearing
loss.
Conclusions
1. 26 variants of bi-allelic SLC26A4 gene mutation were detected
in Mongolian people with EVA and Mondini malformation, and c.919-2A>G was
the most dominant allele variant, and rare variants such as c.1546dupC, c.716T>A
(p.V239D) were detected.
2. Our study shows that whole-exome sequencing (WES) can identify gene
mutations that are not detected by polymerase chain reaction (PCR) or NGS analysis.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Chemical Constituents and Pharmacological Effect of Epimedium sagittatum: A Review
Lixin PEI ; Lin CHEN ; Nuo LI ; Mengyao ZHAO ; Haoyuan YANG ; Xiaoyu YANG ; Baoyu JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):282-290
Epimedium sagittatum is a perennial herb of Berberidaceae. Its leaves have a long history of medicinal use in China. This plant is widely used as a Chinese traditional medicine,with the main functions of tonifying kidney Yang,strengthening bones and muscles,and dispelling wind and dampness. It can be used for treating kidney Yang deficiency,impotence,spermatorrhea,flaccidity of bones and muscles,rheumatic arthralgia,numbness,and spasms. The chemical constituents of this plant include flavonoids,polysaccharides,lignans,and alkaloids. Flavonoids are the main active ingredients. These compounds show a wide range of biological activities,including cartilage repair,anti-aging,anti-fatigue,cough-relieving,blood glucose-lowering,and anti-tumor effects. Modern pharmacological research has shown that E. sagittatum has definite pharmacological effects on the reproductive system,respiratory system,nervous system,cardiovascular system,skeletal system,etc. It has remarkable effects of helping pregnancy,resisting osteoporosis,controlling diabetes,improving immunity,and inhibiting tumor. Under the background of advocating one health and Chinese medicine,E. sagittatum is widely used in health care products,serving as the main raw material of various products. It has great market potential and is a Chinese medicinal herb with great clinical application and research value. This paper reviews the main chemical constituents and pharmacological effects of E. sagittatum based on domestic and foreign reports, providing a theoretical basis for further study on E. sagittatum and its safe clinical application.
8.Chemical Constituents and Pharmacological Effect of Epimedium sagittatum: A Review
Lixin PEI ; Lin CHEN ; Nuo LI ; Mengyao ZHAO ; Haoyuan YANG ; Xiaoyu YANG ; Baoyu JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):282-290
Epimedium sagittatum is a perennial herb of Berberidaceae. Its leaves have a long history of medicinal use in China. This plant is widely used as a Chinese traditional medicine,with the main functions of tonifying kidney Yang,strengthening bones and muscles,and dispelling wind and dampness. It can be used for treating kidney Yang deficiency,impotence,spermatorrhea,flaccidity of bones and muscles,rheumatic arthralgia,numbness,and spasms. The chemical constituents of this plant include flavonoids,polysaccharides,lignans,and alkaloids. Flavonoids are the main active ingredients. These compounds show a wide range of biological activities,including cartilage repair,anti-aging,anti-fatigue,cough-relieving,blood glucose-lowering,and anti-tumor effects. Modern pharmacological research has shown that E. sagittatum has definite pharmacological effects on the reproductive system,respiratory system,nervous system,cardiovascular system,skeletal system,etc. It has remarkable effects of helping pregnancy,resisting osteoporosis,controlling diabetes,improving immunity,and inhibiting tumor. Under the background of advocating one health and Chinese medicine,E. sagittatum is widely used in health care products,serving as the main raw material of various products. It has great market potential and is a Chinese medicinal herb with great clinical application and research value. This paper reviews the main chemical constituents and pharmacological effects of E. sagittatum based on domestic and foreign reports, providing a theoretical basis for further study on E. sagittatum and its safe clinical application.
9.Evaluation of Relationship of Pueraria lobata Quality from Different Producing Areas Based on "Climate Factor-component Content-antioxidant Capacity"
Lixin PEI ; Lin CHEN ; Kaile WANG ; Baoyu JI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):140-148
ObjectiveThe correlation of Pueraria lobata producing areas, climate factors, total flavonoids of P. lobata, polysaccharide content of P. lobata, and antioxidant activity of P.lobata for medicinal application was analyzed, and the relationship between climate factors and the formation of P. lobata quality was evaluated. MethodThe scavenging rates of 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl(DPPH) and 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) radicals by total flavonoids and polysaccharides of P. lobata were detected, and the correlation between the contents of each component and the information of producing areas and climate factors was analyzed. ResultThe ABTS+ scavenging rate by total flavonoids of P.lobata was negatively correlated with altitude (P<0.05) and positively correlated with annual sunshine hours (P<0.05). The altitude was positively correlated with the total flavonoid content, while the annual sunshine hours were negatively correlated with the total flavonoid content. There was a negative correlation between total flavonoid content and ABTS+ scavenging rate by total flavonoids. In other words, lower altitude and longer annual sunshine hours indicated lower total flavonoid content and higher ABTS+ scavenging rate by total flavonoids. The ABTS+ scavenging rate by polysaccharides of P. lobata was negatively correlated with the frost-free period (P<0.05) and the mean temperature in July (P<0.01). There was a positive correlation between the polysaccharide content of P. lobata and the frost-free period. The mean temperature in July was positively correlated with the polysaccharide content of P. lobata (P<0.05). The polysaccharide content of P. lobata was negatively correlated with the ABTS+ scavenging rate by polysaccharide
10."Medicinal Part-Habitat-Tissue-Component" Correlations of Aquatic Chinese Medicinal Plants
Lin CHEN ; Baoyu JI ; Lixin PEI ; Shuangquan XU ; Tangshuai LI ; Suiqing CHEN ; Chengming DONG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(22):212-221
ObjectiveTo explore the correlations between the medicinal parts, habitats, tissue, components, and medicinal properties (natures, tastes, and effects) of 100 aquatic Chinese medicinal plants, thus providing evidence for the relationship between image and analogy and laying a theoretical foundation for the clinical use and development of aquatic Chinese medicinal plant resources. MethodThe Aquatic Plants of China, Flora of China, and related literature were searched, and a total of 100 aquatic Chinese medicinal plants included in the Chinese Pharmacopoeia (2020 edition), Chinese Materia Medica, National Compilation of Chinese Herbal Medicines, Dictionary of Chinese Materia Medica, and local standards were screened out. The medicine-taxonomic status-life habit associations and nature-component-traditional Chinese medicine classification-pharmacological effect associations were analyzed respectively. ResultThe aquatic Chinese medicinal plants mostly had a cold nature, bitter, pungent, and sweet tastes, and tropism to the liver meridian. The whole plant or aerial part was mainly used for medicinal purposes, and these plants generally had well developed aerenchyma. These plants mainly contained flavonoids, alkaloids, and volatile oils and had the effects of clearing heat, detoxifying, and promoting urination. ConclusionThere are correlations between the medicinal parts, habitats, tissue, components, medicinal properties, and effects of aquatic Chinese medicinal plants, which provide reference for the development and utilization of aquatic Chinese medicinal plant resources.

Result Analysis
Print
Save
E-mail