1.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
2.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
3.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
5.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
6.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
7.Identification of terpenoid synthases family in Perilla frutescens and functional analysis of germacrene D synthase.
Pei-Na ZHOU ; Zai-Biao ZHU ; Lei XIONG ; Ying ZHANG ; Peng CHEN ; Huang-Jin TONG ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(10):2658-2673
Based on whole-genome identification of the TPS gene family in Perilla frutescens and screening, cloning, bioinformatics, and expression analysis of the synthetic enzyme for the insect-resistant component germacrene D, this study lays the foundation for understanding the biological function of the TPS gene family and the insect resistance mechanism in P. frutescens. This study used bioinformatics tools to identify the TPS gene family of P. frutescens based on its whole genome and predicted the physicochemical properties, systematic classification, and promoter cis-elements of the proteins. The relative content of germacrene D was detected in both normal and insect-infested leaves of P. frutescens, and the germacrene D synthase was screened and isolated. Gene cloning, bioinformatics analysis, and expression profiling were then performed. The results showed that a total of 99 TPS genes were identified in the genome, which were classified into the TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g subfamilies. Conserved motif analysis showed that the TPS in P. frutescens has conserved structural characteristics within the same subfamily. Promoter cis-element analysis predicted the presence of light-responsive elements, multiple hormone-responsive elements, and stress-responsive elements in the TPS family of P. frutescens. Transcriptome data revealed that most of the TPS genes in P. frutescens were highly expressed in the leaves. GC-MS analysis showed that the relative content of germacrene D significantly increased in insect-damaged leaves, suggesting that it may act as an insect-resistant component. The germacrene D synthase gene was screened through homologous protein binding gene expression and was found to belong to the TPS-a subfamily, encoding a 64.89 kDa protein. This protein was hydrophilic, lacked a transmembrane structure and signal peptide, and was predominantly expressed in leaves, with significantly higher expression in insect-damaged leaves compared to normal leaves. In vitro expression results showed that germacrene D synthase tended to form inclusion bodies. Molecular docking showed that farnesyl pyrophosphate(FPP) fell into the active pocket of the protein and interacted strongly with six active sites. This study provides a foundation for further research on the biological functions of the TPS gene family in P. frutescens and the molecular mechanisms underlying its insect resistance.
Perilla frutescens/chemistry*
;
Plant Proteins/chemistry*
;
Multigene Family
;
Sesquiterpenes, Germacrane/metabolism*
;
Alkyl and Aryl Transferases/chemistry*
;
Phylogeny
;
Gene Expression Regulation, Plant
8.Relationships between Molecular Genetics and Clinical Features of Children with Acute Myeloid Leukemia.
Fei LONG ; Hao XIONG ; Li YANG ; Ming SUN ; Zhi CHEN ; Wen-Jie LU ; Shan-Shan QI ; Fang TAO ; Lin-Lin LUO ; Jing-Pei CHEN
Journal of Experimental Hematology 2025;33(1):69-74
OBJECTIVE:
To analyze the molecular genetic spectrum of children with acute myeloid leukemia (AML), and explore its correlation with clinical characteristics and prognosis.
METHODS:
The clinical and molecular genetic data of 116 children with newly diagnosed AML in Wuhan Children's Hospital from September 2015 to August 2022 were retrospectively analyzed. The Fisher's exact test was used to analyze the correlation of gene mutations with clinical features, and Kaplan-Meier curve was used to analyze the influences of gene mutations on the prognosis.
RESULTS:
NRAS (22%), KRAS (14.9%), and KIT (14.7%) mutations were the most common genetic abnormalities in 116 children with AML. Children with KIT, CEBPA and GATA2 mutations showed a higher median onset-age than those without mutations (all P < 0.05). Children with FLT3-ITD mutation exhibited a higher white blood cell count at initial diagnosis compared to those without mutations (P < 0.05). Children with ASXL2 mutation had lower platelet count and hemoglobin at initial diagnosis than those without mutations (both P < 0.05). KIT mutations were often co-occurred with t(8;21)(q22;q22). There was no significant relationship between gene mutation and minimal residual disease (MRD) remission rate after the first and second induction therapy (P >0.05). KIT and NRAS mutations were not associated with prognosis significantly (P >0.05). The overall survival (OS) rates of children with CEBPA and FLT3-ITD mutations were superior to those without mutations, but the differences were not statistically significant (P >0.05). The 3-year OS rate of 61 children treated by allogeneic hematopoietic stem cell transplantation was 89.8%, which was significantly higher than 55.2% of those only treated by chemotherapy (P < 0.001).
CONCLUSIONS
Gene mutations are common in children with AML, and next-generation sequencing can significantly improve the detection rate of gene mutations, which can guide the risk stratification therapy. In addition, FLT3-ITD and KIT mutations may no longer be poor prognostic factors.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Mutation
;
Prognosis
;
Retrospective Studies
;
fms-Like Tyrosine Kinase 3/genetics*
;
Child
;
Proto-Oncogene Proteins c-kit/genetics*
;
Male
;
Female
;
CCAAT-Enhancer-Binding Proteins/genetics*
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Adolescent
;
GATA2 Transcription Factor/genetics*
;
GTP Phosphohydrolases/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
9.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
10.Artificial intelligence guided Raman spectroscopy in biomedicine: Applications and prospects.
Yuan LIU ; Sitong CHEN ; Xiaomin XIONG ; Zhenguo WEN ; Long ZHAO ; Bo XU ; Qianjin GUO ; Jianye XIA ; Jianfeng PEI
Journal of Pharmaceutical Analysis 2025;15(11):101271-101271
Due to its high sensitivity and non-destructive nature, Raman spectroscopy has become an essential analytical tool in biopharmaceutical analysis and drug development. Despite of the computational demands, data requirements, or ethical considerations, artificial intelligence (AI) and particularly deep learning algorithms has further advanced Raman spectroscopy by enhancing data processing, feature extraction, and model optimization, which not only improves the accuracy and efficiency of Raman spectroscopy detection, but also greatly expands its range of application. AI-guided Raman spectroscopy has numerous applications in biomedicine, including characterizing drug structures, analyzing drug forms, controlling drug quality, identifying components, and studying drug-biomolecule interactions. AI-guided Raman spectroscopy has also revolutionized biomedical research and clinical diagnostics, particularly in disease early diagnosis and treatment optimization. Therefore, AI methods are crucial to advancing Raman spectroscopy in biopharmaceutical research and clinical diagnostics, offering new perspectives and tools for disease treatment and pharmaceutical process control. In summary, integrating AI and Raman spectroscopy in biomedicine has significantly improved analytical capabilities, offering innovative approaches for research and clinical applications.

Result Analysis
Print
Save
E-mail