1.Effect of Gypenosides on MAFLD Mice and Its Molecular Mechanism Based on Classical/Non-classical Ferroptosis Pathways
Yu LIU ; Yupeng PEI ; Jiaxin WANG ; Jingxuan ZHU ; Xiaofei SUN ; Qun WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):99-107
ObjectiveTo explore the effect of gypenosides (GPs) on liver lipid deposition in metabolism-associated fatty liver disease (MAFLD) mice and its mechanism based on classical/non-classical ferroptosis. MethodsEight male C57BL/6 mice in a blank group and 32 male apolipoprotein E gene knockout (ApoE-/-) mice were randomly divided into a model group, a low-dose GPs (GPs-L) group, a high-dose GPs (GPs-H) group, and a simvastatin (SV) group. Starting from the second week, mice in the blank group were given a maintenance diet, and the other four groups were fed a high-fat diet daily. After eight weeks of feeding, mice in the GPs-L and GPs-H groups were given GPs of 1.487 mg·kg-1·d-1 and 2.973 mg·kg-1·d-1, respectively, and mice in the SV group were given simvastatin of 2.275 mg·kg-1·d-1. Mice in the blank group and the model group were given saline of equal volume by gavage for four weeks. The content of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum of mice in each group was detected by an automatic biochemical analyzer. The level of non-esterified fatty acid (NEFA) and TG in the mouse liver was measured by the kit. The change in liver tissue structure and lipid deposition was observed by hematoxylin-eosin (HE) and oil red O staining. The levels of coenzyme Q10 (CoQ10), glutathione (GSH), malondialdehyde (MDA), and Fe2+ in serum, as well as nicotinamide adenine dinucleotide phosphate [NAD(P)H] in the liver were detected by enzyme-linked immunosorbent assay (ELISA). The expression of ferroptosis suppressor protein 1 (FSP1) in the liver of mice was observed by the immunohistochemical (IHC) method, and the expression of genes and proteins related to classical and non-classical ferroptosis pathways was analyzed by real-time polymerase chain reaction (Real-time PCR) and Wes automated protein expression analysis system. ResultsCompared with those in the blank group, the levels of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver in the model group were significantly increased, and the level of HDL-C in serum was significantly decreased (P<0.01). The liver tissue structure changed, and there were fat vacuoles of different sizes and a large number of red lipid droplets, with obvious lipid deposition. The level of CoQ10 and GSH in serum and NADH in the liver were significantly decreased, while the level of MDA and Fe2+ in serum was significantly increased (P<0.01). The mRNA and protein expressions of cystine/glutamate transporter (xCT/SLC7A11), glutathione peroxidase (GPX4), p62, nuclear factor E2-related factor 2 (Nrf2), and FSP1 were significantly decreased, and the mRNA and protein expressions of tumor antigen (p53), spermidine/spermine N1-acetyltransferase 1 (SAT1), arachidonate 15-lipoxygenase (ALOX15), and Kelch-like epichlorohydrin-associated protein-1 (Keap1) were significantly increased (P<0.01). Compared with those in the model group, the level of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver of mice in the GPs-L, GPs-H, and SV groups were decreased, while the level of HDL-C in serum was significantly increased (P<0.05, P<0.01). The liver tissue structure and lipid deposition were improved. The levels of CoQ10 and GSH in serum and NADH in the liver were significantly increased, while the levels of MDA and Fe2+ in serum were significantly decreased (P<0.05, P<0.01). The mRNA and protein expressions of xCT, GPX4, p62, Nrf2, and FSP1 were significantly increased, while the mRNA and protein expressions of p53, SAT1, ALOX15, and Keap1 were significantly decreased (P<0.05, P<0.01). ConclusionGPs can interfere with liver lipid deposition in MAFLD mice through classical/non-classical ferroptosis pathways.
2.Effect of Gypenosides on MAFLD Mice and Its Molecular Mechanism Based on Classical/Non-classical Ferroptosis Pathways
Yu LIU ; Yupeng PEI ; Jiaxin WANG ; Jingxuan ZHU ; Xiaofei SUN ; Qun WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):99-107
ObjectiveTo explore the effect of gypenosides (GPs) on liver lipid deposition in metabolism-associated fatty liver disease (MAFLD) mice and its mechanism based on classical/non-classical ferroptosis. MethodsEight male C57BL/6 mice in a blank group and 32 male apolipoprotein E gene knockout (ApoE-/-) mice were randomly divided into a model group, a low-dose GPs (GPs-L) group, a high-dose GPs (GPs-H) group, and a simvastatin (SV) group. Starting from the second week, mice in the blank group were given a maintenance diet, and the other four groups were fed a high-fat diet daily. After eight weeks of feeding, mice in the GPs-L and GPs-H groups were given GPs of 1.487 mg·kg-1·d-1 and 2.973 mg·kg-1·d-1, respectively, and mice in the SV group were given simvastatin of 2.275 mg·kg-1·d-1. Mice in the blank group and the model group were given saline of equal volume by gavage for four weeks. The content of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum of mice in each group was detected by an automatic biochemical analyzer. The level of non-esterified fatty acid (NEFA) and TG in the mouse liver was measured by the kit. The change in liver tissue structure and lipid deposition was observed by hematoxylin-eosin (HE) and oil red O staining. The levels of coenzyme Q10 (CoQ10), glutathione (GSH), malondialdehyde (MDA), and Fe2+ in serum, as well as nicotinamide adenine dinucleotide phosphate [NAD(P)H] in the liver were detected by enzyme-linked immunosorbent assay (ELISA). The expression of ferroptosis suppressor protein 1 (FSP1) in the liver of mice was observed by the immunohistochemical (IHC) method, and the expression of genes and proteins related to classical and non-classical ferroptosis pathways was analyzed by real-time polymerase chain reaction (Real-time PCR) and Wes automated protein expression analysis system. ResultsCompared with those in the blank group, the levels of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver in the model group were significantly increased, and the level of HDL-C in serum was significantly decreased (P<0.01). The liver tissue structure changed, and there were fat vacuoles of different sizes and a large number of red lipid droplets, with obvious lipid deposition. The level of CoQ10 and GSH in serum and NADH in the liver were significantly decreased, while the level of MDA and Fe2+ in serum was significantly increased (P<0.01). The mRNA and protein expressions of cystine/glutamate transporter (xCT/SLC7A11), glutathione peroxidase (GPX4), p62, nuclear factor E2-related factor 2 (Nrf2), and FSP1 were significantly decreased, and the mRNA and protein expressions of tumor antigen (p53), spermidine/spermine N1-acetyltransferase 1 (SAT1), arachidonate 15-lipoxygenase (ALOX15), and Kelch-like epichlorohydrin-associated protein-1 (Keap1) were significantly increased (P<0.01). Compared with those in the model group, the level of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver of mice in the GPs-L, GPs-H, and SV groups were decreased, while the level of HDL-C in serum was significantly increased (P<0.05, P<0.01). The liver tissue structure and lipid deposition were improved. The levels of CoQ10 and GSH in serum and NADH in the liver were significantly increased, while the levels of MDA and Fe2+ in serum were significantly decreased (P<0.05, P<0.01). The mRNA and protein expressions of xCT, GPX4, p62, Nrf2, and FSP1 were significantly increased, while the mRNA and protein expressions of p53, SAT1, ALOX15, and Keap1 were significantly decreased (P<0.05, P<0.01). ConclusionGPs can interfere with liver lipid deposition in MAFLD mice through classical/non-classical ferroptosis pathways.
3.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
4.Non-Down-syndrome-related acute megakaryoblastic leukemia in children: a clinical analysis of 17 cases.
Ding-Ding CUI ; Ye-Qing TAO ; Xiao-Pei JIA ; An-Na LIAN ; Qiu-Xia FAN ; Dao WANG ; Xue-Ju XU ; Guang-Yao SHENG ; Chun-Mei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1113-1118
OBJECTIVES:
To investigate the clinical features and prognosis of children with non-Down-syndrome-related acute megakaryoblastic leukemia (non-DS-AMKL).
METHODS:
A retrospective analysis was conducted on the medical data of 17 children with non-DS-AMKL who were admitted to Children's Hospital of The First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023, and their clinical features, treatment, and prognosis were summarized.
RESULTS:
Among the 17 children with non-DS-AMKL, there were 8 boys and 9 girls. Fourteen patients had an onset age of less than 36 months, with a median age of 21 months (range:13-145 months). Immunophenotyping results showed that 16 children were positive for CD61 and 13 were positive for CD41. The karyotype analysis was performed on 16 children, with normal karyotype in 6 children and abnormal karyotype in 9 children, among whom 5 had complex karyotype and 1 had no mitotic figure. Detected fusion genes included EVI1, NUP98-KDM5A, KDM5A-MIS18BP1, C22orf34-BRD1, WT1, and MLL-AF9. Genetic alterations included TET2, D7S486 deletion (suggesting 7q-), CSF1R deletion, and PIM1. All 17 children received chemotherapy, among whom 16 (94%) achieved complete remission after one course of induction therapy, and 1 child underwent hematopoietic stem cell transplantation (HSCT) and remained alive and disease-free. Of all children, 7 experienced recurrence, among whom 1 child received HSCT and died of graft-versus-host disease. At the last follow-up, six patients remained alive and disease-free.
CONCLUSIONS
Non-DS-AMKL primarily occurs in children between 1 and 3 years of age. The patients with this disorder have a high incidence rate of chromosomal abnormalities, with complex karyotypes in most patients. Some patients harbor fusion genes or gene mutations. Although the initial remission rate is high, the long-term survival rate remains low.
Humans
;
Male
;
Female
;
Leukemia, Megakaryoblastic, Acute/etiology*
;
Child, Preschool
;
Infant
;
Child
;
Retrospective Studies
;
Prognosis
;
Down Syndrome/complications*
5.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
6.Inhibiting neddylation: A new strategy for tumor therapy.
Jian SUN ; Cui LIU ; Changhui LANG ; Jing WANG ; Qingxiang LI ; Chang PENG ; Zuochen DU ; Yan CHEN ; Pei HUANG
Journal of Pharmaceutical Analysis 2025;15(5):101140-101140
Neddylation is a crucial posttranslational modification that involves the attachment of neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to a lysine residue in the substrate via the sequential actions of the E1 NEDD8-activating enzyme (NAE) (E1), E2 NEDD8-conjugating enzyme (E2), and E3 NEDD8-ligase (E3). The most extensively studied substrates of neddylation are members of the cullin family, which act as scaffold components for cullin ring E3 ubiquitin ligases (CRLs). Since cullin neddylation activates CRLs, which are frequently overactive in tumors, inhibiting neddylation has emerged as a promising strategy for developing novel antitumor therapies. This review explores the antitumor effects of inhibiting neddylation that leads to the inactivation of CRLs and provides a summary of known inhibitors that target protein-protein interactions (PPIs) within the neddylation enzymatic cascade.
7.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
8.Clinical trial of olanzapine tablets combined with magnesium valproate sustained-release tablets in the treatment of adolescent patients with depression
Pei-Jin CUI ; Yue WANG ; Mao-Lin CAO ; Yi-Fei ZHANG ; Liang FANG
The Chinese Journal of Clinical Pharmacology 2024;40(19):2817-2821
Objective To observe the clinical efficacy and safety of olanzapine tablets combined with magnesium valproate sustained-release tablets in the treatment of adolescent depressed patients.Methods Adolescents with depression were divided into control group and treatment group by simple random method.The control group was treated with oral olanzapine tablets with 5 mg·d-1 as the starting dose.After 1 week of treatment,the drug dose was adjusted according to the symptoms and kept within 20 mg·d-1.The treatment group was given oral magnesium valproate sustained-release tablet combined treatment on the basis of the control group,with 0.5 g as the initial dose,and the maximum dose was adjusted according to clinical symptoms after 1 week of treatment,and the maximum dose was no more than 1 g·d-1.Both groups were treated for 12 weeks.The clinical efficacy,excitatory amino acid(EAA),connectin level,intestinal fatty acid binding protein(Ⅰ-FABP),Hamilton depression scale(HAMD),Bech-Rafaelsen Mania Rating Scale(BRMS)and safety of the two groups were compared.Results Sixty-three cases were included in the treatment group and control group,respectively.After treatment,the total effective rates of the treatment group and the control group were 92.06%(58 cases/63 cases)and 79.37%(50 cases/63 cases),respectively,and the difference was statistically significant(P<0.05).After treatment,the levels of EAA in the treatment group and the control group were(29.98±3.44)and(27.97±3.88)μg·mL-1;the levels of zonulin were(189.45±19.56)and(182.33±19.89)ng·mL-1;the levels of Ⅰ-FABP were(99.27±9.13)and(103.84±9.36)pg·mL-1,respectively;the HAMD scores of the treatment group and the control group were 9.88±1.03 and 10.74±1.95;the BRMS scores were 5.08±0.32 and 5.32±0.51,respectively.Compared with the control group,the differences of above indexes in the treatment group were statistically significant(all P<0.05).The main adverse drug reactions in the two groups were weight gain,dry mouth,and drowsiness.The total incidences of adverse drug reactions in the treatment group and the control group were 12.70%and 15.87%,respectively,and the difference was not statistically significant(P>0.05).Conclusion Olanzapine tablets combined with magnesium valproate sustained-release tablets can effectively increase plasma Ⅰ-FABP,EAA,and zonulin levels in adolescent depressed patients,and improve HAMD and BRMS scores,with good safety.
9.Summary Analysis of National Surveillance on Kashin-Beck Disease from 1990 to 2023
Cui SILU ; Liu HUI ; Pei JUNRUI ; Li JIAXIN ; Jiao ZHE ; Deng QING ; Liu NING ; Cao YANHONG ; Yu JUN
Biomedical and Environmental Sciences 2024;37(9):1056-1066
Objective To analyze the epidemiological characteristics and epidemic situation of children with Kashin-Beck disease (KBD) in China,and provide the basis for formulating prevention and control measures. Methods Fixed-point monitoring,moving-point monitoring,and full coverage of monitoring were promoted successively from 1990 to 2023. Some children (7-12 years old) underwent clinical and right-hand X-ray examinations every year. According to the KBD diagnosis criteria,clinical and X-ray assessments were used to confirm the diagnosis. Results In 1990,the national KBD detectable rate was 21.01%. X-ray detection decreased to below 10% in 2003 and below 5% in 2007. Between 2010 and 2018,the prevalence of KBD in children was less than 0.4%,which fluctuated at a low level,and has decreased to 0% since 2019. Spatial epidemiological analysis indicated a spatial clustering of adult patients prevalence rate in the KBD areas. Conclusion The evaluation results of the elimination of KBD in China over the last 5 years showed that all villages in the monitored areas have reached the elimination standard. While the adult KBD patients still need for policy consideration and care.
10.Exploring the molecular mechanism of Epimedium brevicornu Maxim. in treating breast cancer via network pharmacology and in vitro experiments
Xuan Wang ; Bin Cui ; Liuyan Xu ; Xiahua Pei
Journal of Traditional Chinese Medical Sciences 2024;11(2):207-221
Objective:
To evaluate the therapeutic effects of Epimedium brevicornu Maxim. (EBM, Yin Yang Huo) on breast cancer using network pharmacology and in vitro validation. It also aimed to explore the novel targets and mechanisms of EBM in the treatment of breast cancer to facilitate the discovery of new drugs and their clinical application.
Methods:
Network pharmacology was used to identify and screen the components and targets of EBM for breast cancer treatment. Molecular docking was further screened the effective components and targets of EBM. Wound-healing assays and flow cytometry analysis were used to detect the ability of two compounds to intervene in the migration and apoptosis of MDA-MB-231 cells, and their mechanism of action was further explored using western blotting experiments.
Results:
EBM contained 19 active components. Among them were β-anhydroicaritin (Anhy) and isoliquiritigenin (Iso), which were selected for in vitro experiments. Treatment resulted in a dose-dependent suppression of MDA-MB-231 cell viability, with an IC50 of 23.73 μmol/L for Iso and 21.28 μmol/L for Anhy. In the wound healing assay, cells in Anhy and Iso groups exhibited considerable inhibition of migration at 48 h. In flow cytometry analysis, treatment with Iso (20 μmol/L) for 96 h resulted in significantly higher levels of both early and late apoptosis in the Iso group than that in the control group (P = .004 and P = .014, respectively). Additionally, both Iso (20 μmol/L) and Anhy (10 and 20 μmol/L) induced cell necrosis at 96 h. Western blotting revealed that Anhy and Iso increased the expression of Bax and TBK1/NAK.
Conclusion
These findings suggested that Anhy and Iso, the two components of EBM, inhibit MDA-MB-231 cell proliferation and migration of and induce their apoptosis, providing substantial support for future studies on breast cancer.


Result Analysis
Print
Save
E-mail