1.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
2.Exploration of differences in decoction phase state, material form, and crystal form between Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O based on supramolecules of traditional Chinese medicine.
Yao-Zhi ZHANG ; Wen-Min PI ; Xin-Ru TAN ; Ran XU ; Xu WANG ; Ming-Yang XU ; Xue-Mei HUANG ; Peng-Long WANG
China Journal of Chinese Materia Medica 2025;50(2):412-421
With Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum drug pair as the research object, supramolecular chemistry of traditional Chinese medicine(TCM) was used to study differences between the compatibility of herbal medicine Glycyrrhizae Radix et Rhizoma with mineral medicine Gypsum Fibrosum and its main component CaSO_4·2H_2O, so as to preliminarily discuss the scientific connotation of compatibility of Gypsum Fibrosum in clinical application. A Malvern particle sizer, a scanning electron microscope(SEM), and a conductivity meter were used to observe and determine the physical properties such as microscopic morphology, particle size, and conductivity of Gypsum Fibrosum, CaSO_4·2H_2O, and water decoctions of them with Glycyrrhizae Radix et Rhizoma. An inductively coupled plasma optical emission spectrometer(ICP-OES) was employed to detect the inorganic metal elements in Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. Isothermal titration calorimetry(ITC) was conducted to quantify the interactions of Gypsum Fibrosum and CaSO_4·2H_2O with Glycyrrhizae Radix et Rhizoma. A Fourier transform infrared spectrometer(FTIR) was used to analyze the characteristic absorption peak change of Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. X-ray diffraction(XRD) was performed to determine the crystal structure and phase composition of Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. Further, glycyrrhizic acid(GA) was substituted for Glycyrrhizae Radix et Rhizoma to co-decoct with Gypsum Fibrosum, CaSO_4·2H_2O, and freeze-dried powder of their respective water decoctions. The results of XRD were used for verification analysis. The results showed that although CaSO_4·2H_2O is the main component of Gypsum Fibrosum, there were significant differences between their decoctions and between the decoctions of them with Glycyrrhizae Radix et Rhizoma. Specifically,(1) Both CaSO_4·2H_2O and Gypsum Fibrosum were amorphous fibrous. However, the particle size and conductivity were significantly different between the decoctions of CaSO_4·2H_2O and Gypsum Fibrosum alone.(2) Under SEM, Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O was a hybrid system with various morphologies, while Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum presented uniform nanoparticles.(3) The particle sizes and conductivities of Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O and Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum were significantly different and did not follow the same tendency as those of the decoctions of CaSO_4·2H_2O and Gypsum Fibrosum alone.(4) Compared with Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O, Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum had stronger molecular binding ability and functional group structure change.(5) The crystal form was largely different between the freeze-dried powder of CaSO_4·2H_2O decoction and Gypsum Fibrosum decoction, and their crystal forms were also significantly different from those of the freeze-dried powder of Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O and Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum decoctions. The reason for the series of differences is that Gypsum Fibrosum is richer in trace elements than CaSO_4·2H_2O. The XRD results of GA-Gypsum Fibrosum and GA-CaSO_4·2H_2O decoctions further prove the importance of trace elements in Gypsum Fibrosum for supramolecule formation. This research preliminarily reveals the influence of compatibility of Gypsum Fibrosum or CaSO_4·2H_2O on decoction phase state, material form, and crystal form, providing a basis for the rational clinical application of Gypsum Fibrosum.
Drugs, Chinese Herbal/chemistry*
;
Calcium Sulfate/chemistry*
;
Glycyrrhiza/chemistry*
;
Crystallization
;
Particle Size
;
Medicine, Chinese Traditional
;
Rhizome/chemistry*
3.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
4.Preparation of baicalin-berberine complex nanocrystal enteric microspheres and pharmacodynamic evaluation of ulcerative colitis treatment in rats.
Xiao-Chao HUANG ; Yi-Wen HU ; Peng-Yu SHEN ; Rui-Hong JIAN ; Dong-Li QI ; Zhi-Dong LIU ; Jia-Xin PI
China Journal of Chinese Materia Medica 2025;50(15):4263-4274
To enhance the therapeutic efficacy of the baicalin-berberine complex(BA-BBR) in the treatment of ulcerative colitis(UC), BA-BBR nanocrystal microspheres(BA-BBR NC MS) were prepared using the dropping method. The microspheres were characterized in terms of morphology, particle size, differential scanning calorimetry(DSC), and powder X-ray diffraction(XRD). The release profiles of BA and BBR from the microspheres were measured, and the drug release mechanism was investigated. A rat model of UC was induced by 5% dextran sodium sulfate(DSS) and treated continuously for 7 days to evaluate the therapeutic effects of different formulations. The results showed that the prepared BA-BBR MS and BA-BBR NC MS were uniform gel spheres with particle sizes of(1.77±0.16) mm and(1.67±0.08) mm, respectively. After drying, the gels collapsed inward and exhibited a rough surface. During the preparation process, the BA-BBR nanocrystals(BA-BBR NC) were uniformly encapsulated within the microspheres. The release profiles of the microspheres followed a first-order kinetic model, and the 12-hour cumulative release of BA and BBR from BA-BBR NC MS was higher than that from BA-BBR MS. Compared with BA-BBR, BA-BBR NC, and BA-BBR MS, BA-BBR NC MS further alleviated UC symptoms in rats, most significantly reducing the levels of TNF-α, IL-1β, IL-6, and MPO, while increasing the level of IL-4 in colon tissues. These results indicate that BA-BBR NC MS, based on a "nano-in-micro" design, can deliver BA-BBR to the intestine and exert significant therapeutic effects in a UC rat model, suggesting it as a promising new strategy for the treatment of UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Rats
;
Nanoparticles/chemistry*
;
Microspheres
;
Male
;
Berberine/administration & dosage*
;
Flavonoids/administration & dosage*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Particle Size
;
Tumor Necrosis Factor-alpha/immunology*
;
Drug Liberation
;
Drug Compounding
5.Study on Performance of Nebulizer for Pressurized Intraperitoneal Aerosol Chemotherapy.
Lanfeng ZHANG ; Guangjun GUO ; Guibing HOU
Chinese Journal of Medical Instrumentation 2025;49(3):330-335
OBJECTIVE:
The study investigates the performance parameters of a nebulizer for pressurized intraperitoneal aerosol chemotherapy (PIPAC).
METHODS:
Laser diffraction spectroscopy was used to measure the median droplet diameter ( D 50) and spray angle during the steady-state aerosol phase.
RESULTS:
The minimum droplet diameter of aerosol was achieved when using a nozzle of 0.2 mm diameter and 0.07 mm thickness. The nebulizer could not produce steady-state aerosol when the liquid flow rate was less than or equal to 0.3 mL/s. When the liquid flow rate was greater than or equal to 0.5 mL/s, as the working pressure increased, the median particle size gradually decreased and the spray angle gradually increased. When the pressure is greater than or equal to 200 psi(1 psi=6 894.76 Pa), as the liquid flow rate increased, the spray angle gradually increased. At a flow rate of 0.7 mL/s and working pressure of 300 psi, the median droplet diameter of aerosol D 50 was 16 μm with a spray angle up to 89.2°.
CONCLUSION
As a novel intraperitoneal drug delivery technology, PIPAC requires further research focusing on reducing droplet size, expanding drug distribution, improving tissue permeability, and increasing drug concentration.
Nebulizers and Vaporizers
;
Aerosols
;
Particle Size
;
Pressure
;
Drug Delivery Systems
6.EGCG as a therapeutic agent: a systematic review of recent advances and challenges in nanocarrier strategies.
Chee Ning WONG ; Yang Mooi LIM ; Kai Bin LIEW ; Yik-Ling CHEW ; Ang-Lim CHUA ; Siew-Keah LEE
Journal of Zhejiang University. Science. B 2025;26(7):633-656
Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol abundant in green tea, has garnered significant attention for its diverse therapeutic applications, ranging from antioxidant and anti-inflammatory effects to potential anticancer properties. Despite its immense promise, the practical utilization of EGCG in therapeutic settings as a medication has been hampered by inherent limitations of this drug, including poor bioavailability, instability, and rapid degradation. This review comprehensively explores the current challenges associated with the application of EGCG and evaluates the potential of nanoparticle-based formulations in addressing these limitations. Nanoparticles, with their unique physicochemical properties, offer a platform for the enhanced stability, bioavailability, and targeted delivery of EGCG. Various nanoparticle strategies, including polymeric nanoparticle, micelle, lipid-based nanocarrier, metal nanoparticle, and silica nanoparticle, are currently employed to enhance EGCG stability and pharmacological activity. This review concludes that the particle sizes of most of these formulated nanocarriers fall within 300 nm and their encapsulation efficiency ranges from 51% to 97%. Notably, the pharmacological activities of EGCG-loaded nanoparticles, such as antioxidative, anti-inflammatory, anticancer, and antimicrobial effects, are significantly enhanced compared to those of free EGCG. By critically analyzing the existing literature and highlighting recent advancements, this article provides valuable insights into the promising prospects of nanoparticle-mediated EGCG formulations, paving the way for the development of more effective and clinically viable therapeutic strategies.
Animals
;
Humans
;
Anti-Inflammatory Agents/administration & dosage*
;
Antineoplastic Agents/administration & dosage*
;
Antioxidants/administration & dosage*
;
Biological Availability
;
Catechin/analogs & derivatives*
;
Micelles
;
Particle Size
;
Nanoparticle Drug Delivery System/chemistry*
7.Effect of slurry proportion on the microstructure and properties of dental lithium disilicate ceramics manufactured through 3D printing.
Baoxin LIN ; Xiaoxuan CHEN ; Ruyi LI ; Qianbing WAN ; Xibo PEI
West China Journal of Stomatology 2025;43(2):175-182
OBJECTIVES:
This study aims to use 3D prin-ting technology based on the principle of stereo lithography apparatus (SLA) to shape dental lithium disilicate ceramics and study the effects of different slurry proportions on the microstructure and properties of heat-treated samples.
METHODS:
The experimental group comprised lithium disilicate ceramics manufactured through SLA 3D printing, and the control group comprised lithium disilicate ceramics (IPS e.max CAD) fabricated through commercial milling. An array of different particle sizes of lithium disilicate ceramic powder materials (nano and micron) was selected for mixing with photocurable acrylate resin. The proportion of experimental raw materials was adjusted to prepare five groups of ceramic slurries for 3D printing (Groups S1-S5) on the basis of rheological properties, stability, and other factors. Printing, debonding, and sintering were conducted on the experimental group with the optimal ratio, followed by measurements of microstructure, crystallographic information, shrinkage, and mechanical properties.
RESULTS:
Five groups of lithium disilicate ceramic slurries were prepared, of which two groups with high solid content (75%) (Groups S2 and S3) were selected for 3D printing. X-ray diffraction and scanning electron microscopy results showed that lithium disilicate was the main crystalline phase in Groups S2 and S3, and its microstructure was slender, uniform, and compact. The average grain sizes of Groups S2 and S3 were (559.79±84.58) nm and (388.26±61.49) nm, respectively (P<0.05). Energy spectroscopy revealed that the samples in the two groups contained a high proportion of Si and O elements. After heat treatment, the shrinkage rate of the two groups of ceramic samples was 18.00%-20.71%. Test results revealed no statistical difference in all mechanical properties between Groups S2 and S3 (P>0.05). The flexural strengths of Groups S2 and S3 were (231.79±21.71) MPa and (214.86±46.64) MPa, respectively, which were lower than that of the IPS e.max CAD group (P<0.05). The elasticity modulus of Groups S2 and S3 were (87.40±12.99) GPa and (92.87±19.76) GPa, respectively, which did not significantly differ from that of the IPS e.max CAD group (P>0.05). The Vickers hardness values of Groups S2 and S3 were (6.53±0.19) GPa and (6.25±0.12) GPa, respectively, which were higher than that of the IPS e.max CAD group (P<0.05). The fracture toughness values of Groups S2 and S3 were (1.57±0.28) MPa·m0.5 and (1.38±0.17) MPa·m0.5, respectively, which did not significantly differ from that of the IPS e.max CAD group (P>0.05).
CONCLUSIONS
The combination of lithium disilicate ceramic powders with different particle sizes can yield a slurry with high solid content (75%) and suitable viscosity and stability. The dental lithium disilicate ceramic material is successfully prepared by using 3D printing technology. The 3D-printed samples show a small shrinkage rate after heat treatment. Their microstructure conforms to the crystal phase of lithium disilicate ceramics, and their mechanical properties are close to those of milled lithium disilicate ceramics.
Printing, Three-Dimensional
;
Dental Porcelain/chemistry*
;
Ceramics/chemistry*
;
Materials Testing
;
Particle Size
8.Fabrication of chitosan/hyaluronic acid complex nanoparticles for effective siRNA delivery.
Huaiyi LIU ; Fangqian HUANG ; Baiqiu CHEN ; Yunfeng YAN
Chinese Journal of Biotechnology 2025;41(4):1340-1353
The development of safe and effective carriers is crucial for improving the in vivo stability of siRNA drugs and facilitating their clinical translation. Chitosan (CS), a natural cationic polymer, shows great potential in nucleic acid drug delivery. To optimize the physicochemical properties of CS/siRNA nanoparticles (NPs) and increase their siRNA delivery efficacy, in this study, hyaluronic acid (HA) was added into CS to form stable complex NPs through electrostatic interactions. The HA component is able to target the CD44 receptors on the surface of tumor cells, facilitating efficient siRNA delivery. First, we systematically investigated the effects of the molecular weights and mass ratio of CS and HA on the physicochemical properties of CS/HA NPs. The results showed that at HA: CS mass ratios of approximately 5:5 and 6:4, the complex NPs exhibited small particle sizes, narrow size distribution, and high storage stability. Under similar conditions, the size of CS/HA NPs increased with the increase in the molecular weights of CS and HA. Based on these findings, suitable conditions were selected to prepare CS/HA NPs for siRNA delivery. Cell experiments demonstrated that the introduction of HA effectively reduced the cytotoxicity of the CS delivery system and enhanced the NP uptake. The CS/HA/siRNA NPs achieved 50% to 60% silencing of the luciferase gene in HeLa-Luc cells. CS/HA NPs formed smaller nanoparticles with siRNA than pure CS and mediated specific interactions with tumor cells via HA, leading to efficient siRNA delivery. These findings provide valuable insights into the construction of natural polymer composite nanoparticles for application in siRNA delivery.
Hyaluronic Acid/chemistry*
;
Chitosan/chemistry*
;
RNA, Small Interfering/administration & dosage*
;
Nanoparticles/chemistry*
;
Humans
;
Particle Size
;
HeLa Cells
;
Hyaluronan Receptors
9.Process parameter optimization and immunogenicity evaluation of calcium phosphate-coated foot-and-mouth disease virus-like particles.
Lihua REN ; Wei GUO ; Qianqian XIE ; Ruipeng LIU ; Shiqi SUN ; Hu DONG ; Yun ZHANG ; Manyuan BAI ; Huichen GUO ; Zhidong TENG
Chinese Journal of Biotechnology 2025;41(7):2672-2681
Bio-mineralization has emerged as a promising strategy to enhance vaccine immunogenicity. This study optimized the calcium phosphate (CaP) mineralization process of foot-and-mouth disease virus-like particles (FMD VLPs) to achieve high mineralization efficiency and scalability. Key parameters, including concentrations of Ca2+, HPO42-, NaCl, and VLPs, as well as stirring speed, were systematically optimized. Stability of the scaled-up reaction system and immunogenicity of the mineralized vaccine were evaluated. Optimal conditions [25.50 mmol/L Ca(NO3)2, 15 mmol/L Na2HPO4, 300 mmol/L NaCl, 0.75 mg/mL VLPs, and 1 500 r/min] yielded CaP-mineralized VLPs (VLPs-CaP) with high mineralization efficiency, uniform morphology, and a favorable particle size. Scaling up the reaction by 25 folds maintained consistent mineralization efficiency and particle characteristics. Immunization in mice demonstrated that VLPs-CaP induced higher titers of specific antibodies and neutralizing antibodies than unmineralized VLPs (P < 0.05). Higher IgG2a/IgG1 ratio and enhanced IFN-γ secretion (P < 0.05) further indicated robust cellular immune responses. We establish a stable and scalable protocol for VLPs-CaP, providing a theoretical and technical foundation for developing high-efficacy VLPs-CaP vaccines.
Vaccines, Virus-Like Particle/immunology*
;
Immunogenicity, Vaccine
;
Calcium Phosphates/chemistry*
;
Foot-and-Mouth Disease Virus
;
Biomineralization
;
Particle Size
;
Animals
;
Mice
;
Antibodies, Neutralizing/blood*
;
Antibodies, Viral/blood*
;
Immunity, Cellular
10.Quantification of viral particles in adenovirus vector-based vaccines by nano-flow cytometry.
Zhuowei SHI ; Ying ZHANG ; Qingya TIAN ; Ziqiang WANG ; Hong SHAO
Chinese Journal of Biotechnology 2025;41(8):3155-3164
This study aims to establish a method for counting the viral particles in adenovirus vector-based vaccines. Nano-flow cytometry was employed to analyze the viral particles in adenovirus-based vector vaccines at the single-particle level. Monodisperse silica nanoparticles with a refractive index close to that of the virus were selected as the particle size standard to calculate the viral particle size, which was then compared with the results obtained from transmission electron microscopy (TEM) to determine the gating strategy. Subsequently, a particle count standard was employed to calculate the viral particle concentration. The established method demonstrated good linearity, accuracy, precision, and specificity. The results of determined viral particle concentration showed a good correlation with the infectious titer. Compared with the conventional OD260 method, nano-flow cytometry can directly measure the viral particle concentration and indicate whether the sample has been disassembled according to changes in viral particle concentration and size, thus more accurately reflecting the actual infectious potency of the sample. The novel quantification method established in this study is capable of indicating the efficacy of adenovirus vector-based vaccines and provides effective technical support for the quality control of such products.
Adenoviridae/genetics*
;
Genetic Vectors
;
Flow Cytometry/methods*
;
Virion/isolation & purification*
;
Particle Size
;
Nanoparticles
;
Viral Vaccines

Result Analysis
Print
Save
E-mail