1.Precise Magnetic Stimulation of the Paraventricular Nucleus Improves Sociability in a Mouse Model of ASD.
Sha LIU ; Quyang YANG ; Pengfei ZHU ; Xuan LIU ; Qingbo LU ; Jie YANG ; Jingyao GAO ; Hongbin HAN ; Zhijun ZHANG ; Ning GU ; Tao TAN ; Jianfei SUN
Neuroscience Bulletin 2025;41(10):1711-1728
Magnetic stimulation has made significant strides in the treatment of psychiatric disorders. Nonetheless, current magnetic stimulation techniques lack the precision to accurately modulate specific nuclei and cannot realize deep brain magnetic stimulation. To address this, we utilized superparamagnetic iron oxide nanoparticles as mediators to achieve precise targeting and penetration. We investigated the effects of magnetic fields with varying frequencies on neuronal activity and compared the activation effects on neurons using a 10-Hz precise magneto-stimulation system (pMSS) with repetitive transcranial magnetic stimulation in mice. Oxytocin levels, dendritic morphology and density, and mouse behavior were measured before and after pMSS intervention. Our findings suggest that pMSS can activate oxytocinergic neurons, leading to upregulation of oxytocin secretion and neurite outgrowth. As a result, sociability was rapidly improved after a one-week pMSS treatment regimen. These results demonstrate a promising magneto-stimulation method for regulating neuronal activity in deep brain nuclei and provide a promising therapeutic approach for autism spectrum disorder.
Animals
;
Autism Spectrum Disorder/physiopathology*
;
Paraventricular Hypothalamic Nucleus/physiology*
;
Disease Models, Animal
;
Transcranial Magnetic Stimulation/methods*
;
Male
;
Social Behavior
;
Mice
;
Oxytocin/metabolism*
;
Mice, Inbred C57BL
;
Neurons/physiology*
2.NMDA receptors in prelimbic cortex neurons projecting to paraventricular nucleus of the thalamus are associated with morphine withdrawal memory retrieval.
Chen-Shan CHU ; Ya-Xian WEN ; Qian-Ru SHEN ; Bin LAI ; Ming CHEN ; Ping ZHENG
Acta Physiologica Sinica 2024;76(6):917-926
At present, the problem of drug addiction treatment mainly lies in the high relapse rate of drug addicts. Addictive drugs will bring users a strong sense of euphoria and promote drug seeking. Once the drug is withdrawn, there will be withdrawal symptoms such as strong negative emotions and uncomfortable physical reactions. The recurrence of context-induced withdrawal memory is an important reason for drug relapse. Our previous study has shown increased c-Fos expression in prelimbic cortex (PrL) neurons projecting to paraventricular nucleus of the thalamus (PVT) (PrL-PVT) during conditioned context-induced retrieval of morphine withdrawal memory. However, whether PrL-PVT neurons are involved in withdrawal memory retrieval and the underlying molecular mechanisms remain unknown. In this study, we used conditioned place aversion (CPA) model combined with in vivo calcium signal recording, chemogenetics and nucleus drug injection methods to investigate the role and molecular mechanism of PrL-PVT neurons in retrieval of morphine withdrawal memory. The results showed that the calcium signals of PrL-PVT neurons were significantly enhanced by withdrawal-related context; Inhibition of PrL-PVT neurons blocked the conditioned context-induced morphine withdrawal memory retrieval; Activation of PrL-PVT neurons caused animals to escape from the context; After the inhibition of NMDA receptors in the PrL, withdrawal-related context failed to increase c-Fos and Arc expressions in PrL-PVT neurons. The above results suggest that NMDA receptors in PrL-PVT neurons are associated with retrieval of morphine withdrawal memory. This study is of great significance for further understanding the neural circuit mechanism of withdrawal memory retrieval as well as the intervention and prevention of drug relapse.
Animals
;
Substance Withdrawal Syndrome/physiopathology*
;
Morphine/adverse effects*
;
Neurons/physiology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Male
;
Rats
;
Paraventricular Hypothalamic Nucleus/metabolism*
;
Memory
;
Rats, Sprague-Dawley
;
Morphine Dependence/physiopathology*
;
Midline Thalamic Nuclei/physiology*
;
Neural Pathways/metabolism*
3.Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus.
Yi-Yuan WANG ; Yi WU ; Ke-Wei YU ; Hong-Yu XIE ; Yi GUI ; Chang-Rui CHEN ; Nian-Hong WANG
Journal of Integrative Medicine 2024;22(6):719-728
OBJECTIVE:
This study investigates the sleep-modulating effects of ginsenoside Rg1 (Rg1, C42H72O14), a key bioactive component of ginseng, and elucidates its underlying mechanisms.
METHODS:
C57BL/6J mice were intraperitoneally administered doses of Rg1 ranging from 12.5 to 100 mg/kg. Sleep parameters were assessed to determine the average duration of each sleep stage by monitoring the electrical activity of the brain and muscles. Further, orexin neurons in the lateral hypothalamus (LH) and corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) were ablated using viral vector surgery and electrode embedding. The excitability of LHorexin and PVHCRH neurons was evaluated through the measurement of cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-Fos) expression.
RESULTS:
Rg1 (12.5-100 mg/kg) augmented the duration of non-rapid eye movement (NREM) sleep phases, while reducing the duration of wakefulness, in a dose dependent manner. The reduced latency from wakefulness to NREM sleep indicates an accelerated sleep initiation time. We found that these sleep-promoting effects were weakened in the LHorexin and PVHCRH neuron ablation groups, and disappeared in the orexin and CRH double-ablation group. Decreased c-Fos protein expression in the LH and PVH confirmed that Rg1 promoted NREM sleep by inhibiting orexin and CRH neurons.
CONCLUSION
Rg1 increases the duration of NREM sleep, underscoring the essential roles of LHorexin and PVHCRH neurons in facilitating the sleep-promoting effects of Rg1. Please cite this article as: Wang YY, Wu Y, Yu KW, Xie HY, Gui Y, Chen CR, Wang NH. Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus. J Integr Med. 2024; 22(6): 721-730.
Animals
;
Ginsenosides/pharmacology*
;
Orexins/metabolism*
;
Mice, Inbred C57BL
;
Neurons/metabolism*
;
Paraventricular Hypothalamic Nucleus/metabolism*
;
Male
;
Hypothalamic Area, Lateral/metabolism*
;
Corticotropin-Releasing Hormone/metabolism*
;
Mice
;
Sleep/drug effects*
4.Circuit-Specific Control of Blood Pressure by PNMT-Expressing Nucleus Tractus Solitarii Neurons.
Shirui JUN ; Xianhong OU ; Luo SHI ; Hongxiao YU ; Tianjiao DENG ; Jinting CHEN ; Xiaojun NIE ; Yinchao HAO ; Yishuo SHI ; Wei LIU ; Yanming TIAN ; Sheng WANG ; Fang YUAN
Neuroscience Bulletin 2023;39(8):1193-1209
The nucleus tractus solitarii (NTS) is one of the morphologically and functionally defined centers that engage in the autonomic regulation of cardiovascular activity. Phenotypically-characterized NTS neurons have been implicated in the differential regulation of blood pressure (BP). Here, we investigated whether phenylethanolamine N-methyltransferase (PNMT)-expressing NTS (NTSPNMT) neurons contribute to the control of BP. We demonstrate that photostimulation of NTSPNMT neurons has variable effects on BP. A depressor response was produced during optogenetic stimulation of NTSPNMT neurons projecting to the paraventricular nucleus of the hypothalamus, lateral parabrachial nucleus, and caudal ventrolateral medulla. Conversely, photostimulation of NTSPNMT neurons projecting to the rostral ventrolateral medulla produced a robust pressor response and bradycardia. In addition, genetic ablation of both NTSPNMT neurons and those projecting to the rostral ventrolateral medulla impaired the arterial baroreflex. Overall, we revealed the neuronal phenotype- and circuit-specific mechanisms underlying the contribution of NTSPNMT neurons to the regulation of BP.
Solitary Nucleus/metabolism*
;
Blood Pressure/physiology*
;
Phenylethanolamine N-Methyltransferase/metabolism*
;
Neurons/metabolism*
;
Paraventricular Hypothalamic Nucleus/metabolism*
5.Endogenous corticotropin-releasing factor potentiates the excitability of presympathetic neurons in paraventricular nucleus via activation of its receptor 1 in spontaneously hypertensive rats.
Hong-Yu MA ; Xin-Qi GUO ; Qi-Yue ZHAO ; Pei-Yun YANG ; Huai-Bing ZHU ; Yue GUAN ; Yi ZHANG ; Hui-Jie MA
Acta Physiologica Sinica 2023;75(4):487-496
It is well established that increased excitability of the presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) during hypertension leads to heightened sympathetic outflow and hypertension. However, the mechanism underlying the overactivation of PVN presympathetic neurons remains unclear. This study aimed to investigate the role of endogenous corticotropin-releasing factor (CRF) on the excitability of presympathetic neurons in PVN using Western blot, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) recording, CRISPR/Cas9 technique and patch-clamp technique. The results showed that CRF protein expression in PVN was significantly upregulated in spontaneously hypertensive rats (SHRs) compared with normotensive Wistar-Kyoto (WKY) rats. Besides, PVN administration of exogenous CRF significantly increased RSNA, heart rate and ABP in WKY rats. In contrast, knockdown of upregulated CRF in PVN of SHRs inhibited CRF expression, led to membrane potential hyperpolarization, and decreased the frequency of current-evoked firings of PVN presympathetic neurons, which were reversed by incubation of exogenous CRF. Perfusion of rat brain slices with artificial cerebrospinal fluid containing CRF receptor 1 (CRFR1) blocker, NBI-35965, or CRF receptor 2 (CRFR2) blocker, Antisauvagine-30, showed that blocking CRFR1, but not CRFR2, hyperpolarized the membrane potential and inhibited the current-evoked firing of PVN presympathetic neurons in SHRs. However, blocking CRFR1 or CRFR2 did not affect the membrane potential and current-evoked firing of presympathetic neurons in WKY rats. Overall, these findings indicate that increased endogenous CRF release from PVN CRF neurons enhances the excitability of presympathetic neurons via activation of CRFR1 in SHRs.
Rats
;
Animals
;
Rats, Inbred SHR
;
Paraventricular Hypothalamic Nucleus/physiology*
;
Receptors, Corticotropin-Releasing Hormone/metabolism*
;
Rats, Inbred WKY
;
Corticotropin-Releasing Hormone/metabolism*
;
Neurons/physiology*
;
Hypertension
;
Sympathetic Nervous System
6.Interaction of olfaction and feeding behavior and its neural mechanism.
Acta Physiologica Sinica 2022;74(2):276-282
Olfaction and food intake are interrelated and regulated. In the process of feeding, the metabolic signals in the body and the feeding signals produced by food stimulation are first sensed by the arcuate nucleus of hypothalamus and the nucleus tractus solitarius of brain stem, and then these neurons project to the paraventricular nucleus of hypothalamus. The paraventricular nucleus transmits the signals to other brain regions related to feeding and regulates feeding behavior. In this process, olfactory signals can be transmitted to hypothalamus through olfactory bulb and olfactory cortex to regulate feeding behavior. At the same time, gastrointestinal hormones (ghrelin, insulin, leptin, etc.) and some neurotransmitters (acetylcholine, norepinephrine, serotonin, endocannabinoid, etc.) produced in the process of feeding act on the olfactory system to regulate olfactory function, which in turn affects the feeding itself. This review summaries the research progress of the interaction between olfaction and food intake and its internal mechanism from the aspects of neuronal and hormonal regulation.
Arcuate Nucleus of Hypothalamus/metabolism*
;
Feeding Behavior/physiology*
;
Hypothalamus
;
Paraventricular Hypothalamic Nucleus
;
Smell
7.Chronic Intracerebroventricular Infusion of Metformin Inhibits Salt-Sensitive Hypertension via Attenuation of Oxidative Stress and Neurohormonal Excitation in Rat Paraventricular Nucleus.
Xiao-Jing YU ; Ya-Nan ZHAO ; Yi-Kang HOU ; Hong-Bao LI ; Wen-Jie XIA ; Hong-Li GAO ; Kai-Li LIU ; Qing SU ; Hui-Yu YANG ; Bin LIANG ; Wen-Sheng CHEN ; Wei CUI ; Ying LI ; Guo-Qing ZHU ; Zhi-Ming YANG ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):57-66
Metformin (MET), an antidiabetic agent, also has antioxidative effects in metabolic-related hypertension. This study was designed to determine whether MET has anti-hypertensive effects in salt-sensitive hypertensive rats by inhibiting oxidative stress in the hypothalamic paraventricular nucleus (PVN). Salt-sensitive rats received a high-salt (HS) diet to induce hypertension, or a normal-salt (NS) diet as control. At the same time, they received intracerebroventricular (ICV) infusion of MET or vehicle for 6 weeks. We found that HS rats had higher oxidative stress levels and mean arterial pressure (MAP) than NS rats. ICV infusion of MET attenuated MAP and reduced plasma norepinephrine levels in HS rats. It also decreased reactive oxygen species and the expression of subunits of NAD(P)H oxidase, improved the superoxide dismutase activity, reduced components of the renin-angiotensin system, and altered neurotransmitters in the PVN. Our findings suggest that central MET administration lowers MAP in salt-sensitive hypertension via attenuating oxidative stress, inhibiting the renin-angiotensin system, and restoring the balance between excitatory and inhibitory neurotransmitters in the PVN.
Animals
;
Antioxidants
;
therapeutic use
;
Arterial Pressure
;
drug effects
;
Hypertension
;
chemically induced
;
drug therapy
;
Infusions, Intraventricular
;
Male
;
Metformin
;
administration & dosage
;
pharmacology
;
Neurotransmitter Agents
;
metabolism
;
Oxidative Stress
;
drug effects
;
Paraventricular Hypothalamic Nucleus
;
drug effects
;
Rats
;
Reactive Oxygen Species
;
metabolism
;
Sodium Chloride, Dietary
;
pharmacology
8.Blockade of Endogenous Angiotensin-(1-7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension.
Xiao-Jing YU ; Yu-Wang MIAO ; Hong-Bao LI ; Qing SU ; Kai-Li LIU ; Li-Yan FU ; Yi-Kang HOU ; Xiao-Lian SHI ; Ying LI ; Jian-Jun MU ; Wen-Sheng CHEN ; Wei CUI ; Guo-Qing ZHU ; Philip J EBENEZER ; Joseph FRANCIS ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):47-56
Angiotensin (Ang)-(1-7) is an important biologically-active peptide of the renin-angiotensin system. This study was designed to determine whether inhibition of Ang-(1-7) in the hypothalamic paraventricular nucleus (PVN) attenuates sympathetic activity and elevates blood pressure by modulating pro-inflammatory cytokines (PICs) and oxidative stress in the PVN in salt-induced hypertension. Rats were fed either a high-salt (8% NaCl) or a normal salt diet (0.3% NaCl) for 10 weeks, followed by bilateral microinjections of the Ang-(1-7) antagonist A-779 or vehicle into the PVN. We found that the mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma norepinephrine (NE) were significantly increased in salt-induced hypertensive rats. The high-salt diet also resulted in higher levels of the PICs interleukin-6, interleukin-1beta, tumor necrosis factor alpha, and monocyte chemotactic protein-1, as well as higher gp91 expression and superoxide production in the PVN. Microinjection of A-779 (3 nmol/50 nL) into the bilateral PVN of hypertensive rats not only attenuated MAP, RSNA, and NE, but also decreased the PICs and oxidative stress in the PVN. These results suggest that the increased MAP and sympathetic activity in salt-induced hypertension can be suppressed by blockade of endogenous Ang-(1-7) in the PVN, through modulation of PICs and oxidative stress.
Angiotensin I
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Antioxidants
;
pharmacology
;
Blood Pressure
;
drug effects
;
Hypertension
;
chemically induced
;
drug therapy
;
Male
;
Oxidative Stress
;
drug effects
;
Paraventricular Hypothalamic Nucleus
;
drug effects
;
Peptide Fragments
;
antagonists & inhibitors
;
metabolism
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Sodium Chloride, Dietary
;
pharmacology
9.Differences in sympathetic nervous system activity and NMDA receptor levels within the hypothalamic paraventricular nucleus in rats with differential ejaculatory behavior.
Jia-Dong XIA ; Jie CHEN ; Bai-Bing YANG ; Hai-Jian SUN ; Guo-Qing ZHU ; Yu-Tian DAI ; Jie YANG ; Zeng-Jun WANG
Asian Journal of Andrology 2018;20(4):355-359
Differences in intravaginal ejaculation latency reflect normal biological variation, but the causes are poorly understood. Here, we investigated whether variation in ejaculation latency in an experimental rat model is related to altered sympathetic nervous system (SNS) activity and expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus of the hypothalamus (PVN). Male rats were classified as "sluggish," "normal," and "rapid" ejaculators on the basis of ejaculation frequency during copulatory behavioral testing. The lumbar splanchnic nerve activity baselines in these groups were not significantly different at 1460 ± 480 mV, 1660 ± 600 mV, and 1680 ± 490 mV, respectively (P = 0.71). However, SNS sensitivity was remarkably different between the groups (P < 0.01), being 28.9% ± 8.1% in "sluggish," 48.4% ± 7.5% in "normal," and 88.7% ± 7.4% in "rapid" groups. Compared with "normal" ejaculators, the percentage of neurons expressing NMDA receptors in the PVN of "rapid" ejaculators was significantly higher, whereas it was significantly lower in "sluggish" ejaculators (P = 0.01). In addition, there was a positive correlation between the expression of NMDA receptors in the PVN and SNS sensitivity (r = 0.876, P = 0.02). This study shows that intravaginal ejaculatory latency is associated with SNS activity and is mediated by NMDA receptors in the PVN.
Animals
;
Copulation
;
Ejaculation/physiology*
;
Female
;
Male
;
Neurons/physiology*
;
Paraventricular Hypothalamic Nucleus/physiology*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Sexual Behavior, Animal/physiology*
;
Splanchnic Nerves/physiology*
;
Sympathetic Nervous System/physiology*
10.Maternal deprivation-induced stress responses in female rats.
Bo SUN ; Shang-feng GAO ; Ling-juan RUAN ; Ai-min BAO
Journal of Zhejiang University. Medical sciences 2012;41(2):125-131
OBJECTIVETo investigate the effect of maternal deprivation on the activity of hypothalamo-pituitary-adrenal (HPA) axis, acute stress response and the sex hormone receptors expression in hypothalamic paraventricular nucleus (PVN) in female rats.
METHODSMaternal deprivation model was induced in female Sprague-Dawley (SD) rats. Foot shock was given at different stages of estrus cycle during the adulthood. Plasma estradiol, testosterone and adrenocorticotropin (ACTH) levels were determined by radioimmunoassay; and plasma corticosterone level was measured by enzyme linked immunosorbent assay. The expression of androgen receptor (AR) and estrogen receptor (ER-β) in the hypothalamic PVN was detected by immunohistochemistry.
RESULTSDecreased plasma ACTH and corticosterone levels were found in the proestrus of female rats with maternal deprivation (P=0.012 and P=0.019, respectively). A significant down-regulation (P=0.008) of PVN-AR, but not PVN-ER-β expression was found in female rats with maternal deprivation.
CONCLUSIONMaternal deprivation may reduce the HPA axis activity in female SD rats, which is closely correlated with the fluctuation of the circulating sex hormones. The androgen in the hypothalamus seems to play a more important role than the estrogen in this procedure.
Adrenocorticotropic Hormone ; blood ; Animals ; Corticosterone ; blood ; Estradiol ; blood ; Female ; Hypothalamo-Hypophyseal System ; physiopathology ; Maternal Deprivation ; Paraventricular Hypothalamic Nucleus ; metabolism ; Pituitary-Adrenal System ; physiopathology ; Rats ; Rats, Sprague-Dawley ; Receptors, Androgen ; metabolism ; Receptors, Estrogen ; metabolism ; Stress, Physiological ; Testosterone ; blood

Result Analysis
Print
Save
E-mail