1.SMUG1 promoted the progression of pancreatic cancer via AKT signaling pathway through binding with FOXQ1.
Zijian WU ; Wei WANG ; Jie HUA ; Jingyao ZHANG ; Jiang LIU ; Si SHI ; Bo ZHANG ; Xiaohui WANG ; Xianjun YU ; Jin XU
Chinese Medical Journal 2025;138(20):2640-2656
BACKGROUND:
Pancreatic cancer is a lethal malignancy prone to gemcitabine resistance. The single-strand selective monofunctional uracil DNA glycosylase (SMUG1), which is responsible for initiating base excision repair, has been reported to predict the outcomes of different cancer types. However, the function of SMUG1 in pancreatic cancer is still unclear.
METHODS:
Gene and protein expression of SMUG1 as well as survival outcomes were assessed by bioinformatic analysis and verified in a cohort from Fudan University Shanghai Cancer Center. Subsequently, the effect of SMUG1 on proliferation, cell cycle, and migration abilities of SMUG1 cells were detected in vitro . DNA damage repair, apoptosis, and gemcitabine resistance were also tested. RNA sequencing was performed to determine the differentially expressed genes and signaling pathways, followed by quantitative real-time polymerase chain reaction and Western blotting verification. The cancer-promoting effect of forkhead box Q1 (FOXQ1) and SMUG1 on the ubiquitylation of myelocytomatosis oncogene (c-Myc) was also evaluated. Finally, a xenograft model was established to verify the results.
RESULTS:
SMUG1 was highly expressed in pancreatic tumor tissues and cells, which also predicted a poor prognosis. Downregulation of SMUG1 inhibited the proliferation, G1 to S transition, migration, and DNA damage repair ability against gemcitabine in pancreatic cancer cells. SMUG1 exerted its function by binding with FOXQ1 to activate the Protein Kinase B (AKT)/p21 and p27 pathway. Moreover, SMUG1 also stabilized the c-Myc protein via AKT signaling in pancreatic cancer cells.
CONCLUSIONS
SMUG1 promotes proliferation, migration, gemcitabine resistance, and c-Myc protein stability in pancreatic cancer via protein kinase B signaling through binding with FOXQ1. Furthermore, SMUG1 may be a new potential prognostic and gemcitabine resistance predictor in pancreatic ductal adenocarcinoma.
Humans
;
Pancreatic Neoplasms/pathology*
;
Forkhead Transcription Factors/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation/physiology*
;
Mice
;
Uracil-DNA Glycosidase/genetics*
;
Female
;
Male
;
Gemcitabine
;
Mice, Nude
;
Apoptosis/physiology*
;
Deoxycytidine/analogs & derivatives*
;
Cell Movement/genetics*
2.Effects of p38 phosphorylation on stemness maintenance and chemotherapy drug resistance of PANC-1 cells.
Xueying SHI ; Jinbo YU ; Shihai YANG ; Jin ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):116-124
Objective The aim of this study was to investigate the effect of p38 on stem cell maintenance of pancreatic cancer. Methods Human pancreatic cancer cells PANC-1 were treated with different concentrations of 5-fluorouracil(5-FU)(0.5×IC50, IC50, and 2×IC50) for 24 hours, and VX-702 (p38 phosphorylation inhibitor) was added, and the cells were inoculated in 6-well culture dishes with ultra-low adhesion to observe the changes of sphere tumors. The expression levels of cyclin-dependent kinase 2(CDK2), cyclin B1 and D1, Octamer-binding transcription factor 4(OCT4), SRY-box transcription factor 2(SOX2), Nanog and p38 were measured by Western blot. The mRNA expression levels of p38, OCT4, Nanog and SOX2 were tested by RT-PCR. Cell cycle, apoptosis, and the proportion of CD44+CD133+PANC-1 cells were evaluated by flow cytometry. Results The results showed that 5-FU inhibited the formation of tumor spheres in PANC-1 cells, increased CD44+CD133+cell fragments, down-regulated the expression of OCT4, Nanog and SOX2, and inhibited the stemness maintenance of PANC-1 tumor stem cells. Phosphorylation of PANC-1 cells was inhibited by a highly selective p38 MAPK inhibitor, VX-702(p38 mitogen-activated protein kinase inhibitor), which had the same effect as 5-FU treatment. When VX-702 combined with 5-FU was used to treat PANC-1 cells, the therapeutic effect was enhanced. Conclusion p38 inhibitors decreased PANC-1 cell activity and increased cell apoptosis. p38 inhibitors inhibit the stemness maintenance of pancreatic cancer stem cells.
Humans
;
Phosphorylation/drug effects*
;
Cell Line, Tumor
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors*
;
Neoplastic Stem Cells/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Fluorouracil/pharmacology*
;
Pancreatic Neoplasms/pathology*
;
Apoptosis/drug effects*
;
SOXB1 Transcription Factors/genetics*
;
Octamer Transcription Factor-3/genetics*
3.High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast.
Dawei XIE ; Zheng WANG ; Beibei SUN ; Liwei QU ; Musheng ZENG ; Lin FENG ; Mingzhou GUO ; Guizhen WANG ; Jihui HAO ; Guangbiao ZHOU
Frontiers of Medicine 2023;17(5):907-923
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
Female
;
Humans
;
Alternative Splicing
;
Breast Neoplasms/metabolism*
;
Carcinoma, Pancreatic Ductal/pathology*
;
Focal Adhesion Protein-Tyrosine Kinases/therapeutic use*
;
Nerve Tissue Proteins/genetics*
;
Neuroendocrine Tumors/genetics*
;
Oncogenes
;
Pancreatic Neoplasms/metabolism*
4.Doublecortin-like kinase 1 activates Hippo pathway to promote migration, invasion and proliferation of pancreatic cancer cells.
Rui YAN ; Zi Wei LIANG ; He Shu LIU ; Yang GE ; Guang Yu AN
Chinese Journal of Oncology 2023;45(7):594-604
Objective: To explore the mechanism of Doublecortin-like kinase 1 (DCLK1) in promoting cell migration, invasion and proliferation in pancreatic cancer. Methods: The correlation between DCLK1 and Hippo pathway was analyzed using TCGA and GTEx databases and confirmed by fluorescence staining of pancreatic cancer tissue microarrays. At the cellular level, immunofluorescence staining of cell crawls and western blot assays were performed to clarify whether DCLK1 regulates yes associated protein1 (YAP1), a downstream effector of the Hippo pathway. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyze the expressions of YAP1 binding transcription factor TEA-DNA binding proteins (TEAD) and downstream malignant behavior-promoting molecules CYR61, EDN1, AREG, and CTGF. Transwell test of the DCLK1-overexpressing cells treated with the Hippo pathway inhibitor Verteporfin was used to examine whether the malignant behavior-promoting ability was blocked. Analysis of changes in the proliferation index of experimental cells used real-time label-free cells. Results: TCGA combined with GTEx data analysis showed that the expressions of DCLK1 and YAP1 molecules in pancreatic cancer tissues were significantly higher than those in adjacent tissues (P<0.05). Moreover, DCLK1was positively correlated with the expressions of many effectors in the Hippo pathway, including LATS1 (r=0.53, P<0.001), LATS2 (r=0.34, P<0.001), MOB1B (r=0.40, P<0.001). In addition, the tissue microarray of pancreatic cancer patients was stained with multicolor fluorescence, indicated that the high expression of DCLK1 in pancreatic cancer patients was accompanied by the up-regulated expression of YAP1. The expression of DCLK1 in pancreatic cancer cell lines was analyzed by the CCLE database. The results showed that the expression of DCLK1 in AsPC-1 and PANC-1 cells was low. Thus, we overexpressed DCLK1 in AsPC-1 and PANC-1 cell lines and found that DCLK1 overexpression in pancreatic cancer cell lines promoted YAP1 expression and accessible to the nucleus. In addition, DCLK1 up-regulated the expression of YAP1 binding transcription factor TEAD and increased the mRNA expression levels of downstream malignant behavior-promoting molecules. Finally, Verteporfin, an inhibitor of the Hippo pathway, could antagonize the cell's malignant behavior-promoting ability mediated by high expression of DCLK1. We found that the number of migrated cells with DCLK1 overexpressing AsPC-1 group was 68.33±7.09, which was significantly higher than 22.00±4.58 of DCLK1 overexpressing cells treated with Verteporfin (P<0.05). Similarly, the migration number of PANC-1 cells overexpressing DCLK1 was 65.66±8.73, which was significantly higher than 37.00±6.00 of the control group and 32.33±9.61 of Hippo pathway inhibitor-treated group (P<0.05). Meanwhile, the number of invasive cells in the DCLK1-overexpressed group was significantly higher than that in the DCLK1 wild-type group cells, while the Verteporfin-treated DCLK1-overexpressed cells showed a significant decrease. In addition, we monitored the cell proliferation index using the real-time cellular analysis (RTCA) assay, and the proliferation index of DCLK1-overexpressed AsPC-1 cells was 0.66±0.04, which was significantly higher than 0.38±0.01 of DCLK1 wild-type AsPC-1 cells (P<0.05) as well as 0.05±0.03 of DCLK1-overexpressed AsPC1 cells treated with Verteporfin (P<0.05). PANC-1 cells showed the same pattern, with a proliferation index of 0.77±0.04 for DCLK1-overexpressed PANC-1 cells, significantly higher than DCLK1-overexpressed PANC1 cells after Verteporfin treatment (0.14±0.05, P<0.05). Conclusion: The expression of DCLK1 is remarkably associated with the Hippo pathway, it promotes the migration, invasion, and proliferation of pancreatic cancer cells by activating the Hippo pathway.
Humans
;
Doublecortin-Like Kinases
;
Hippo Signaling Pathway
;
Verteporfin/pharmacology*
;
Cell Line, Tumor
;
Protein Serine-Threonine Kinases/metabolism*
;
Pancreatic Neoplasms/pathology*
;
YAP-Signaling Proteins
;
Transcription Factors/metabolism*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Tumor Suppressor Proteins/genetics*
6.Exosomal miR-485-3p derived from pancreatic ductal epithelial cells inhibits pancreatic cancer metastasis through targeting PAK1.
Mingzhe LI ; Jiaxin ZHOU ; Zhengkui ZHANG ; Jisong LI ; Feng WANG ; Ling MA ; Xiaodong TIAN ; Zebin MAO ; Yinmo YANG
Chinese Medical Journal 2022;135(19):2326-2337
BACKGROUND:
Cell competition is an important feature in pancreatic cancer (PC) progression, but the underlying mechanism remains elusive. This study aims to explore the role of exosomes derived from normal pancreatic ductal epithelial cells involved in PC progression.
METHODS:
PC cells and pancreatic stellate cells (PSCs) were treated with exosomes isolated from pancreatic ductal epithelial cells. Cell proliferation was assessed by CCK8 assays. Cell migration and invasion were assessed by Transwell assays. PC and matched adjacent non-tumor tissue specimens were obtained from 46 patients pathologically diagnosed with PC at Peking University First Hospital from 2013 to 2017. Tissue miR-485-3p and p21-activated kinase-1 (PAK1) expression was examined by real-time polymerase chain reaction (RT-PCR), and the relationship of the two was analyzed using Pearman's product-moment correlation. The clinical significance of miR-485-3p was analyzed using the Chi-square test, Wilcoxon rank-sum test, and Fisher exact probability, respectively. The binding of miR-485-3p to PAK1 5'-untranslated region (5'-UTR) was examined by luciferase assay. PC cells were xenografted into nude mice as a PC metastasis model.
RESULTS:
Exosomes from pancreatic ductal epithelial cells suppressed PC cell migration and invasion as well as the secretion and migration of PSCs. MiR-485-3p was enriched in the exosomes of pancreatic ductal epithelial cells but deficient in those of PC cells and PSCs, in accordance with the lower level in PSCs and PC cells than that in pancreatic ductal cells. And the mature miR-485-3p could be delivered into these cells by the exosomes secreted by normal pancreatic duct cells, to inhibit PC cell migration and invasion. Clinical data analysis showed that miR-485-3p was significantly decreased in PC tissues (P < 0.05) and was negatively associated with lymphovascular invasion (P = 0.044). As a direct target of miR-485-3p, PAK1 was found to exert an inhibitory effect on PC cells, and there was a significantly negative correlation between the expression levels of miR-485-3p and PAK1 (r = -0.6525, P < 0.0001) in PC tissues. Moreover, miR-485-3p could suppress PC metastasis in vivo by targeting p21-activated kinase-1.
CONCLUSIONS
Exosomal miR-485-3p delivered by normal pancreatic ductal epithelial cells into PC cells inhibits PC metastasis by directly targeting PAK1. The restoration of miR-485-3p by exosomes or some other vehicle might be a novel approach for PC treatment.
Animals
;
Mice
;
MicroRNAs/metabolism*
;
Mice, Nude
;
p21-Activated Kinases/metabolism*
;
Cell Line, Tumor
;
Pancreatic Neoplasms/genetics*
;
Epithelial Cells/metabolism*
;
Pancreatic Ducts/pathology*
;
Cell Proliferation
;
Cell Movement
;
Gene Expression Regulation, Neoplastic
7.Multiple Endocrine Neoplasia Type 1 Presenting as Hypoglycemia due to Insulinoma.
Eun Byul KWON ; Hwal Rim JEONG ; Young Seok SHIM ; Hae Sang LEE ; Jin Soon HWANG
Journal of Korean Medical Science 2016;31(6):1003-1006
Multiple endocrine neoplasia (MEN) mutation is an autosomal dominant disorder characterized by the occurrence of parathyroid, pancreatic islet, and anterior pituitary tumors. The incidence of insulinoma in MEN is relatively uncommon, and there have been a few cases of MEN manifested with insulinoma as the first symptom in children. We experienced a 9-year-old girl having a familial MEN1 mutation. She complained of dizziness, occasional palpitation, weakness, hunger, sweating, and generalized tonic-clonic seizure that lasted for 5 minutes early in the morning. At first, she was only diagnosed with insulinoma by abdominal magnetic resonance images of a 1.3 × 1.5 cm mass in the pancreas and high insulin levels in blood of the hepatic vein, but after her father was diagnosed with MEN1. We found she had familial MEN1 mutation, and she recovered hyperinsulinemic hypoglycemia after enucleation of the mass. Therefore, the early genetic identification of MEN1 mutation is considerable for children with at least one manifestation.
Alleles
;
Base Sequence
;
Child
;
DNA Mutational Analysis
;
Female
;
Humans
;
Hypoglycemia/diagnosis
;
Insulin/blood
;
Insulinoma/diagnostic imaging/*pathology
;
Magnetic Resonance Imaging
;
Multiple Endocrine Neoplasia Type 1/*diagnosis/pathology
;
Pancreatic Neoplasms/diagnostic imaging/*pathology
;
Pedigree
;
Polymorphism, Single Nucleotide
;
Proto-Oncogene Proteins/genetics
;
Seizures/complications
8.Effects of miR-125a-5p on Cell Proliferation,Apoptosis and Cell Cycle of Pancreatic Cancer Cells.
Cong-Wei JIA ; Yang SUN ; Ting-Ting ZHANG ; Zhao-Hui LU ; Jie CHEN
Acta Academiae Medicinae Sinicae 2016;38(4):415-421
Objective To investigate the effects of miR-125a-5p on cell proliferation,apoptosis and cell cycle of pancreatic cancer cells.Methods The expression level of miR-125a-5p in pancreatic cancer was determined using quantitative real-time polymerase chain reaction analysis in 4 pairs of pancreatic cancer tissues and matched adjacent normal tissues samples. The expression of miR-125a-5p was downregulated in pancreatic cancer cell lines by transfection with miR-125a-5p inhibitor. Cell counting kit-8 assays was conducted to detect the growth ability of pancreatic cancer cell lines. Flow cytometry was applied to detect the cell cycle and apopotosis. Soft agar colony formation test was employed to assess the role of miR-125a-5p in process of malignant transformation.Results MiR-125a-5p was significantly highly expressed in pancreatic ductal adenocarcinoma tissues than adjacent normal tissues(P<0.05). After the expression level of miR-125a-5p in Panc-1 and MIA PaCa-2 was downregulated,the growth ability was suppressed(P<0.05),early apopotosis rate was promoted by 13.6% and 11.0% respectively(P<0.05),the amount of colony formation was reduced by 27.3% and 27.8%,respectively(P<0.05),and the percentage of S stage of Panc-1 was reduced by 11.8% (P<0.05).Conclusions The expression of miR-125a-5p is high in pancreatic ductal adenocarcinoma tissues. After the expression level of miR-125a-5p is downregulated,the growth ability,colony formation,and cell cycle of Panc-1 and MIA PaCa-2 are suppressed,and the early apopotosis rate will be promoted. Therefore,miR-125a-5p may play an oncogenic role in pancreatic ductal adenocarcinoma.
Apoptosis
;
Carcinoma, Pancreatic Ductal
;
pathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Transformation, Neoplastic
;
Down-Regulation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Pancreatic Neoplasms
;
pathology
9.The role of endosomal cholesterol trafficking protein, StAR-related lipid transfer domain 3 (StarD3/MLN64), in BRIN-BD11 insulinoma cells.
Joana Borges PINTO ; Annette GRAHAM
Protein & Cell 2016;7(11):833-838
Animals
;
Carrier Proteins
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Insulinoma
;
genetics
;
metabolism
;
pathology
;
Mice
;
Neoplasm Proteins
;
genetics
;
metabolism
;
Pancreatic Neoplasms
;
genetics
;
metabolism
;
pathology
;
Phosphoproteins
;
genetics
;
metabolism
10.Expression and significance of HIF-1α and HIF-2α in pancreatic cancer.
Min WANG ; Mei-yuan CHEN ; Xing-jun GUO ; Jian-xin JIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):874-879
The expression levels of hypoxia-inducible factor 1alpha (HIF-1α) and HIF-2α in pancreatic cancer (PC) and their association with clinicopathologic characteristics were investigated in order to elucidate their roles in the development of PC. HIF-1α and HIF-2α mRNA levels in 20 patients with PC were detected by quantitative real-time polymerase chain reaction. The expression of HIF-1α and HIF-2α protein in samples from other 90 patients with PC was measured by immunohistochemistry. Correlations between the expression of HIF-1α or HIF-2α and clinicopathologica features and prognosis were analyzed. The expression of both HIF-1α and HIF-2α mRNA was up-regulated in most cancer tissues (P<0.05). HIF-1α staining was weakly positive in most cancer tissues and strongly positive in adjacent pancreas tissues (P<0.05). Clinicopathologic analysis revealed that relatively strong HIF-1α expression in cancer tissues was related to greater invasion (P<0.05), higher tumor pathologic stage (P<0.05), higher American Joint Committee on Cancer (AJCC) stage (P<0.05) and shorter overall survival time (P<0.05). Conversely, HIF-2α staining was strongly positive in most cancer tissues and weakly positive in adjacent pancreas tissues. Clinicopathologic analysis revealed that relatively strong HIF-2α expression in cancer tissues was related to less invasion (P<0.05), lower tumor pathologic stage (P<0.05), lower AJCC stage (P<0.05) and longer overall survival time (P<0.05). Moreover, the HIF-1α(high)/HIF-2α(low) group showed a shorter survival time than the HIF-1α(low)/HIF-2α(high) group. In conclusion, although HIF-1α and HIF-2α mRNA expression patterns are the same, their protein expression patterns are significantly different and they play different roles in PC. Combined analysis of HIF-1α and HIF-2α expression might be useful to predict the prognosis of patients with PC.
Basic Helix-Loop-Helix Transcription Factors
;
genetics
;
metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
metabolism
;
Pancreatic Neoplasms
;
metabolism
;
pathology
;
Prognosis
;
RNA, Messenger
;
genetics

Result Analysis
Print
Save
E-mail