1.Effects of Dendrobium nobile Lindl. alkaloids on behavior and hippocampal tissue damage in manganese-exposed rats
Qian LEI ; Xiaodong YAO ; Yan LI ; Mengheng ZOU ; Zongyang PAN ; Yu CHEN ; Jinping LIU ; Jida LI ; Yuyan CEN
Journal of Environmental and Occupational Medicine 2025;42(5):616-621
Background Manganese is an essential trace element for the human body and maintains normal development of many organs including the brain. However, long-term exposure to a high manganese environment or excessive manganese intake will lead to manganese poisoning and result in neurological diseases, and currently no effective treatment plan is available. Objective To develop an animal model for subchronic manganese exposure and assess the impact of Dendrobium nobile Lindl. alkaloids (DNLA) on manganese associated behavioral and hippocampal effects in rats. Methods Fifty male SPF SD rats were randomly allocated into a control group (0.9% normal saline by intraperitoneal injection), two experimental groups [7.5 mg·kg−1 (low) or 15 mg·kg−1 (high) of MnCl2·4H2O by intraperitoneal injection], and two DNLA antagonistic groups [15 mg·kg−1 MnCl2·4H2O by intraperitoneal injection then either 20 mg·kg−1 (low) or 40 mg·kg−1 (high) DNLA by oral administration]. All groups of rats were adminaistered 5 d per wek, once a day, for consecutive 13 weeks. Following modeling, neurobehavioral assessments were conducted using open field, Morris water maze, and Y maze. Inductively coupled plasma mass spectrometry (ICP-MS) was utilized to measure manganese levels in the blood and brain tissues of the rats, and hematoxylin-eosin (HE) staining was employed to examine neuronal morphological changes in the hippocampal tissues of the rats. Results The neurobehavioral tests revealed that the manganese-exposed rats exhibited decreased total movement distance, prolonged central zone dwelling time, and reduced motor activity in the open field test, indicating tendencies toward depression and anxiety (P<0.05). In the Y-maze test, the mean exploration distance in the novel arm, the number of entries into the novel arm, and the time spent in the novel arm of the managanses-exposed rats were all reduced, while the latency period increased, suggesting impaired spatial exploration and learning-memory functions (P<0.05). In the Morris water maze navigation test, the escape latency was significantly longer in the manganese-exposed rats compared to the control group, and the number of platform crossings decreased in the spatial probe test, indicating a significant decline in spatial learning and memory (P<0.05). The ICP-MS analysis showed elevated manganese concentrations in the blood and hippocampus of the exposed rats (P<0.05), and the histopathological observation revealed hippocampal damage. Following the DNLA intervention, the manganese-exposed rats showed increased total movement distance and reduced central zone dwelling time in the open field test (P<0.05). In the Y-maze test, the mean exploration distance in the novel arm, the number of entries into the novel arm, and the time spent in the novel arm increased, while the latency period decreased, suggesting alleviation of anxiety and improved exploratory behavior (P<0.05). In the Morris water maze test, the escape latency gradually shortened, and both the number of platform crossings and the percentage of time spent in the target quadrant increased, indicating improved spatial learning and memory (P<0.05). Additionally, the manganese levels in the blood and hippocampus decreased (P<0.05), and the hippocampal pathological changes were partially restored. Conclusion DNLA demonstrates the ability to counteract multiple neurotoxic effects following the elevation of manganese levels in the blood and hippocampal tissues of rats induced by subchronic manganese exposure. Specifically, DNLA is shown to ameliorate the behavioral alterations observed in rats after manganese exposure, and mitigate the hippocampal damage in manganese-exposed rats.
2.Pain, agitation, and delirium practices in Chinese intensive care units: A national multicenter survey study.
Xiaofeng OU ; Lijie WANG ; Jie YANG ; Pan TAO ; Cunzhen WANG ; Minying CHEN ; Xuan SONG ; Zhiyong LIU ; Zhenguo ZENG ; Man HUANG ; Xiaogan JIANG ; Shusheng LI ; Erzhen CHEN ; Lixia LIU ; Xuelian LIAO ; Yan KANG
Chinese Medical Journal 2025;138(22):3031-3033
3.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
4.Scientific characterization of medicinal amber: evidence from geological and archaeological studies.
Qi LIU ; Qing-Hui LI ; Di-Ying HUANG ; Yan LI ; Pan XIAO ; Ji-Qing BAI ; Hua-Sheng PENG ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):2905-2914
Amber and subfossil resins are subjects of interdisciplinary research across multiple fields. However, due to their diverse origins and complex compositions, different disciplines vary in their definitions and functional interpretations. In traditional Chinese medicine(TCM), amber has been utilized as a medicinal material since ancient time, with extensive historical documentation. However, its classification, provenance, and nomenclature remain ambiguous, and authentic medicinal amber artifacts are exceedingly rare. This study employed Fourier-transform infrared spectroscopy(FTIR) to characterize amber and subfossil resins from various geological sources and commercially "medicinal amber". Additionally, historical literature and market surveys were analyzed to explore their provenance, composition, and functional attributes. The results indicate that amber and subfossil resins from different sources and with different compositions exhibit distinct fingerprint characteristics in the FTIR spectral range of 1 800-700 cm~(-1). "Medicinal amber" available in the market primarily consists of subfossil or modern resins, significantly differing in composition and structure from geological amber. This study highlights the importance of interdisciplinary research on amber identification and resource management. It is essential to establish a systematic database of amber and subfossil resin characteristics and integrate modern analytical techniques to enhance research on their composition, pharmacological mechanisms, and potential therapeutic effects, thereby promoting the standardized utilization of amber resources and advancing the modernization of TCM.
Amber/history*
;
Archaeology
;
Spectroscopy, Fourier Transform Infrared
;
Medicine, Chinese Traditional
5.Scientific analysis and usage reassessment of suspected medicinal cinnabar unearthed from Mawangdui Tomb No.3 of the Han Dynasty.
Ning-Ning XU ; Ting-Yan REN ; Ming-Jie LI ; Pan XIAO ; Guo-Hui SHEN ; Ji-Qing BAI ; Qi LIU
China Journal of Chinese Materia Medica 2025;50(11):2915-2923
Cinnabar(HgS) was widely used in ancient times for medicinal purposes, religious rituals, and pigments. A group of bright red powdery clumps was excavated from Mawangdui Tomb No.3 of the Han Dynasty. Early studies considered the clumps as evidence of cinnabar's medicinal use during the Qin-Han period. This study employed a range of archaeometric techniques, including extended-depth-of-field stereo imaging, micro-CT, scanning electron microscopy-energy dispersive spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometry FTIR, to systematically analyze the material composition and structural characteristics of these remains. The results revealed that the cinnabar particles were granular, finely ground, and tightly bound to silk matrix, with no detectable excipients typically associated with medicinal formulations. Micro-CT imaging indicated a well-preserved textile structure, with clear signs of sedimentary accumulation and mechanical damage. Based on historical and archaeological studies, this study suggested that these remains were more likely degraded accumulations of cinnabar-colored silk textiles rather than medicinal cinnabar. By clarifying the diversity of ancient cinnabar applications and preservation states, this study provides new insights for the archaeological identification of mineral medicinal materials and contributes to the standardized study of Chinese medicinal materials and understanding of the historical use of cinnabar.
History, Ancient
;
China
;
Humans
;
Medicine, Chinese Traditional/history*
;
Archaeology
;
Drugs, Chinese Herbal/history*
;
Spectroscopy, Fourier Transform Infrared
;
Spectrum Analysis, Raman
;
Mercury Compounds
6.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
7.Establishment of different pneumonia mouse models suitable for traditional Chinese medicine screening.
Xing-Nan YUE ; Jia-Yin HAN ; Chen PAN ; Yu-Shi ZHANG ; Su-Yan LIU ; Yong ZHAO ; Xiao-Meng ZHANG ; Jing-Wen WU ; Xuan TANG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(15):4089-4099
In this study, lipopolysaccharide(LPS), ovalbumin(OVA), and compound 48/80(C48/80) were administered to establish non-infectious pneumonia models under simulated clinical conditions, and the correlation between their pathological characteristics and traditional Chinese medicine(TCM) syndromes was compared, providing the basis for the selection of appropriate animal models for TCM efficacy evaluation. An acute pneumonia model was established by nasal instillation of LPS combined with intraperitoneal injection for intensive stimulation. Three doses of OVA mixed with aluminum hydroxide adjuvant were injected intraperitoneally on days one, three, and five and OVA was administered via endotracheal drip for excitation on days 14-18 to establish an OVA-induced allergic pneumonia model. A single intravenous injection of three doses of C48/80 was adopted to establish a C48/80-induced pneumonia model. By detecting the changes in peripheral blood leukocyte classification, lung tissue and plasma cytokines, immunoglobulins(Ig), histamine levels, and arachidonic acid metabolites, the multi-dimensional analysis was carried out based on pathological evaluation. The results showed that the three models could cause pulmonary edema, increased wet weight in the lung, and obvious exudative inflammation in lung tissue pathology, especially for LPS. A number of pyrogenic cytokines, inclading interleukin(IL)-6, interferon(IFN)-γ, IL-1β, and IL-4 were significantly elevated in the LPS pneumonia model. Significantly increased levels of prostacyclin analogs such as prostaglandin E2(PGE2) and PGD2, which cause increased vascular permeability, and neutrophils in peripheral blood were significantly elevated. The model could partly reflect the clinical characteristics of phlegm heat accumulating in the lung or dampness toxin obstructing the lung. The OVA model showed that the sensitization mediators IgE and leukotriene E4(LTE4) were increased, and the anti-inflammatory prostacyclin 6-keto-PGF2α was decreased. Immune cells(lymphocytes and monocytes) were decreased, and inflammatory cells(neutrophils and basophils) were increased, reflecting the characteristics of "deficiency", "phlegm", or "dampness". Lymphocytes, monocytes, and basophils were significantly increased in the C48/80 model. The phenotype of the model was that the content of histamine, a large number of prostacyclins(6-keto-PGE1, PGF2α, 15-keto-PGF2α, 6-keto-PGF1α, 13,14-D-15-keto-PGE2, PGD2, PGE2, and PGH2), LTE4, and 5-hydroxyeicosatetraenoic acid(5S-HETE) was significantly increased, and these indicators were associated with vascular expansion and increased vascular permeability. The pyrogenic inflammatory cytokines were not increased. The C48/80 model reflected the characteristics of cold and damp accumulation. In the study, three non-infectious pneumonia models were constructed. The LPS model exhibited neutrophil infiltration and elevated inflammatory factors, which was suitable for the efficacy study of TCM for clearing heat, detoxifying, removing dampness, and eliminating phlegm. The OVA model, which took allergic inflammation as an index, was suitable for the efficacy study of Yiqi Gubiao formulas. The C48/80 model exhibited increased vasoactive substances(histamine, PGs, and LTE4), which was suitable for the efficacy study and evaluation of TCM for warming the lung, dispersing cold, drying dampness, and resolving phlegm. The study provides a theoretical basis for model selection for the efficacy evaluation of TCM in the treatment of pneumonia.
Animals
;
Disease Models, Animal
;
Mice
;
Pneumonia/genetics*
;
Medicine, Chinese Traditional
;
Male
;
Humans
;
Cytokines/immunology*
;
Female
;
Lipopolysaccharides/adverse effects*
;
Lung/drug effects*
;
Drugs, Chinese Herbal
;
Ovalbumin
;
Mice, Inbred BALB C
8.Polarized light microscopic mineral phase authentication and health risk assessment of raw and calcined fossil mineral Chinese medicinal material Draconis Os.
Yan-Qiong PAN ; Zheng LIU ; Li-Wen ZHENG ; Ying ZHANG ; Liu ZHOU ; Xi-Long QIAN ; Fang FANG ; Xiao WU ; Sheng-Jin LIU
China Journal of Chinese Materia Medica 2025;50(15):4238-4247
This study aims to investigate the polarized microscopic mineral phase characteristics, inorganic element content, and potential health risks associated with the intake of raw and calcined fossil mineral Chinese medicinal material Draconis Os. Microscopy was employed to observe the mineralogical characteristics of Draconis Os and compare the microscopic features and phase composition of raw and calcined Draconis Os under monochromatic and orthogonal polarized light. Inductively coupled plasma mass spectrometry(ICP-MS) was employed to determine the content of 30 inorganic elements. Health risk assessment was conducted by calculating the single pollution index(P_i), average daily intake of elements for adults(ADI), target hazard quotient(THQ), non-carcinogenic assessment method-hazard quotient(HQ), and the carcinogenic risk of elements(CR). The results indicated that under monochromatic polarized light, the Draconis Os powder sections exhibited light gray-brown to gray-brown irregular fragments, some with undulating textures that were slightly curved. Under crossed polarized light, they appeared dark gray, grayish-white, and yellowish-white. Clear apatite was visible in the ground sections of Draconis Os under crossed polarized light. P_i results indicated that Draconis Os samples were free from contamination and were of good quality. According to the maximum allowable limits of heavy metals stipulated in ISO Traditional Chinese Medicine: Determination of heavy metals in herbal medicines used in Traditional Chinese Medicine, ADI, THQ, HQ, and CR were taken as assessment indicators. Only the THQ value for As(arsenic) in raw Draconis Os was greater than 1, while the THQ values for other heavy metal elements in the Draconis Os samples were all less than 1. The study demonstrates that the primary mineral phase of raw and calcined Draconis Os is apatite, with some samples co-existing with calcite, which can serve as one of the means for quality control of Draconis Os. The elemental analysis results from ICP-MS provide scientific evidence for the safety assessment of Draconis Os, indicating that Draconis Os is safe in clinical application.
Drugs, Chinese Herbal/analysis*
;
Risk Assessment
;
Minerals/chemistry*
;
Fossils
;
Humans
;
Drug Contamination
;
Mass Spectrometry
9.Quality evaluation of Xinjiang Rehmannia glutinosa and Rehmannia glutinosa based on fingerprint and multi-component quantification combined with chemical pattern recognition.
Pan-Ying REN ; Wei ZHANG ; Xue LIU ; Juan ZHANG ; Cheng-Fu SU ; Hai-Yan GONG ; Chun-Jing YANG ; Jing-Wei LEI ; Su-Qing ZHI ; Cai-Xia XIE
China Journal of Chinese Materia Medica 2025;50(16):4630-4640
The differences in chemical quality characteristics between Xinjiang Rehmannia glutinosa and R. glutinosa were analyzed to provide a theoretical basis for the introduction and quality control of R. glutinosa. In this study, the high performance liquid chromatography(HPLC) fingerprints of 6 batches of Xinjiang R. glutinosa and 10 batches of R. glutinosa samples were established. The content of iridoid glycosides, phenylethanoid glycosides, monosaccharides, oligosaccharides, and polysaccharides in Xinjiang R. glutinosa and R. glutinosa was determined by high performance liquid chromatography-diode array detection(HPLC-DAD), high performance liquid chromatography-evaporative light scattering detection(HPLC-ELSD), and ultraviolet-visible spectroscopy(UV-Vis). The determination results were analyzed with by chemical pattern recognition and entropy weight TOPSIS method. The results showed that there were 19 common peaks in the HPLC fingerprints of the 16 batches of R. glutinosa, and catalpol, aucubin, rehmannioside D, rehmannioside A, hydroxytyrosol, leonuride, salidroside, cistanoside A, and verbascoside were identified. Hierarchical cluster analysis(HCA) and principal component analysis(PCA) showed that Qinyang R. glutinosa, Mengzhou R. glutinosa, and Xinjiang R. glutinosa were grouped into three different categories, and eight common components causing the chemical quality difference between Xinjiang R. glutinosa and R. glutinosa in Mengzhou and Qinyang of Henan province were screened out by orthogonal partial least squares discriminant analysis(OPLS-DA). The results of content determination showed that there were glucose, sucrose, raffinose, stachyose, polysaccharides, and nine glycosides in Xinjiang R. glutinosa and R. glutinosa samples, and the content of catalpol, rehmannioside A, leonuride, cistanoside A, verbascoside, sucrose, and glucose was significantly different between Xinjiang R. glutinosa and R. glutinosa. The analysis with entropy weight TOPSIS method showed that the comprehensive quality of R. glutinosa in Mengzhou and Qinyang of Henan province was better than that of Xinjiang R. glutinosa. In conclusion, the types of main chemical components of R. glutinosa and Xinjiang R. glutinosa were the same, but their content was different. The chemical quality of R. glutinosa was better than Xinjiang R. glutinosa, and other components in R. glutinosa from two producing areas and their effects need further study.
Rehmannia/classification*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Quality Control
10.Analysis of the global competitive landscape in artificial intelligence medical device research.
Juan CHEN ; Lizi PAN ; Junyu LONG ; Nan YANG ; Fei LIU ; Yan LU ; Zhaolian OUYANG
Journal of Biomedical Engineering 2025;42(3):496-503
The objective of this study is to map the global scientific competitive landscape in the field of artificial intelligence (AI) medical devices using scientific data. A bibliometric analysis was conducted using the Web of Science Core Collection to examine global research trends in AI-based medical devices. As of the end of 2023, a total of 55 147 relevant publications were identified worldwide, with 76.6% published between 2018 and 2024. Research in this field has primarily focused on AI-assisted medical image and physiological signal analysis. At the national level, China (17 991 publications) and the United States (14 032 publications) lead in output. China has shown a rapid increase in publication volume, with its 2023 output exceeding twice that of the U.S.; however, the U.S. maintains a higher average citation per paper (China: 16.29; U.S.: 35.99). At the institutional level, seven Chinese institutions and three U.S. institutions rank among the global top ten in terms of publication volume. At the researcher level, prominent contributors include Acharya U Rajendra, Rueckert Daniel and Tian Jie, who have extensively explored AI-assisted medical imaging. Some researchers have specialized in specific imaging applications, such as Yang Xiaofeng (AI-assisted precision radiotherapy for tumors) and Shen Dinggang (brain imaging analysis). Others, including Gao Xiaorong and Ming Dong, focus on AI-assisted physiological signal analysis. The results confirm the rapid global development of AI in the medical device field, with "AI + imaging" emerging as the most mature direction. China and the U.S. maintain absolute leadership in this area-China slightly leads in publication volume, while the U.S., having started earlier, demonstrates higher research quality. Both countries host a large number of active research teams in this domain.
Artificial Intelligence
;
Bibliometrics
;
Humans
;
China
;
Equipment and Supplies
;
United States
;
Biomedical Research

Result Analysis
Print
Save
E-mail