1.Mechanism of Shenfu Xiongze Prescription in Regulating Autophagy Level to Intervene in Myocardial Remodeling in Rats via AMPK/mTOR Signaling Pathway
Xueqing WANG ; Wei ZHONG ; Liangliang PAN ; Caihong LI ; Man HAN ; Xiaowei YANG ; Yuanwang YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):136-144
ObjectiveTo explore the mechanism by which the Shenfu Xiongze prescription regulates autophagy in rats with myocardial remodeling through the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. MethodsA rat model of myocardial remodeling induced by isoprenaline (ISO) was established. Rats were divided into the blank group,the model group,the low-,medium-, and high-dose groups of Shenfu Xiongze prescription,and the captopril group, 6 rats in each group. Except for the blank group,the rat model of myocardial remodeling was established in the other groups by intraperitoneal injection of 2.5 mg·kg-1 ISO for 3 consecutive weeks. At the same time of modeling, the low-,medium-, and high-dose groups of Shenfu Xiongze prescription were administered the corresponding doses of Shenfu Xiongze prescription solution (8.4,16.8,and 33.6 g·kg-1),and the captopril group was administered captopril solution (25 mg·kg-1). As for the blank group and the model group, the same volume of normal saline was given. The treatment was continued for 3 weeks. Echocardiography was used to observe the cardiac structure and function,and the heart weight index was detected. Masson staining and hematoxylin-eosin (HE) staining were used to observe the pathological morphology changes of myocardial tissue. The levels of interleukin-6 (IL-6) and B-type natriuretic peptide (BNP) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of type Ⅰ collagen (Collagen Ⅰ),type Ⅲ collagen (Collagen Ⅲ),and microtubule-associated protein 1 light chain 3 (LC3) proteins in myocardial tissue was determined by immunohistochemistry. Autophagy was observed by transmission electron microscopy. The mRNA expression of Collagen Ⅰ,Collagen Ⅲ,α-smooth muscle actin (α-SMA),LC3,yeast Atg6 homolog protein (Beclin-1),AMPK,and mTOR in myocardial tissue was detected by quantitative real-time polymerase chain reaction (real-time PCR). The protein expression of Collagen Ⅰ,α-SMA,transforming growth factor-β1 (TGF-β1),LC3,Beclin-1,p62, phosphorylation(p)-AMPK,p-mTOR,AMPK,and mTOR was detected by Western blot. ResultsCompared with the normal group,rats in the model group exhibited significantly decreased values of ejection fraction (EF) and left ventricular fractional shortening (FS) (P<0.01), significantly increased values of left ventricular end-diastolic diameter (LVIDd) and left ventricular end-systolic diameter (LVIDs) (P<0.01). Additionally, the model group also showed increased degrees of inflammatory infiltration and fibrosis of myocardial tissue, significantly elevated levels of serum IL-6 and BNP (P<0.01), significantly increased mRNA and protein levels of Collagen Ⅰ,Collagen Ⅲ,α-SMA,and mTOR (P<0.01),and markedly decreased mRNA and protein levels of LC3,Beclin-1,and AMPK (P<0.05,P<0.01). Compared with the model group, the low-,medium-, and high-dose groups of Shenfu Xiongze prescription presented significantly elevated EF and FS values (P<0.01) and lowered LVIDd and LVIDs (P<0.05). In these groups, the inflammation and fibrosis were alleviated significantly. They also exhibited decreased serum levels of IL-6 and BNP (P<0.01), significantly reduced protein expression of Collagen Ⅰ, α-SMA, TGF-β1, p62, and p-mTOR (P<0.01), significantly decreased mRNA expression of Collagen Ⅰ, Collagen Ⅲ, α-SMA, and mTOR (P<0.01), and significantly increased mRNA and protein levels of LC3, Beclin-1, and AMPK (P<0.05,P<0.01). ConclusionThe Shenfu Xiongze prescription can improve the myocardial remodeling induced by ISO in rats by regulating the autophagy level,enhance cardiac function,and reduce inflammatory and fibrotic levels. This effect may be achieved through the AMPK/mTOR signaling pathway.
2.Analysis of Quality Changes of Small Packaged Alismatis Rhizoma Decoction Pieces Under Different Packaging and Storage Conditions
Gaoting YANG ; Rui XIAN ; Zimin WANG ; Zongyi ZHAO ; Zhiqiong LAN ; Xiaoli PAN ; Min LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):179-188
ObjectiveTo screen suitable packaging and storage conditions for small packaged Alismatis Rhizoma decoction pieces, laying the foundation for developing standardized storage, maintenance techniques and determining shelf life. MethodsUsing the accelerated stability test method, the small packaged decoction pieces of Alismatis Rhizoma were placed in polyethylene plastic bags, aluminum foil polyethylene composite bags, and cowhide coated paper bags under temperature of (40±2) ℃ and relative humidity of (75±5)% conditions, the quality testing was conducted at the end of the 0th, 1st, 2nd, 3rd, and 6th month, respectively. Using long-term stability test method, an orthogonal experiment was designed to investigate storage conditions, packaging materials, and packaging methods. At the end of the 0th, 1st, 3rd, 6th, 9th, 12th, 18th, and 24th month, the quality of small packaged Alismatis Rhizoma decoction pieces was tested under different packaging and storage conditions(including 2 packaging methods:vacuum packaging and sealed packaging, 3 storage conditions:room temperature, cool, and modified atmosphere, 3 packaging materials:cowhide coated paper bag, aluminum foil polyethylene composite bag, and polyethylene plastic bag). Then, the G1-entropy weight method combined with orthogonal experiment was used to analyze the quality changes of the decoction pieces under different packaging and storage conditions to identify optimal packaging and storage conditions. The quality testing indicators for Alismatis Rhizoma decoction pieces were expanded beyond those specified in the 2020 edition of the Pharmacopoeia of the People's Republic of China. In addition to the existing indicators(characteristics, moisture content, extractives, and the total content of 23-acetyl alisol B and 23-acetyl alisol C), new indicators including color value, water activity, total triterpenoid content, and alisol B content have been added. ResultsThe accelerated stability test results indicated that the quality of small packaged Alismatis Rhizoma decoction pieces was more stable when packaged in aluminum foil-polyethylene composite materials compared to cowhide-coated paper bags and polyethylene plastic bags. Analysis of the long-term stability test results using the G1-entropy weight method combined with orthogonal experiment revealed that storage conditions had the greatest impact on both raw and salt-processed products, followed by packaging materials, while the packaging method had the least influence. For both types of small packaged Alismatis Rhizoma decoction pieces, modified atmosphere storage demonstrated superior efficacy compared to cool storage or room temperature storage. Storage in aluminum foil-polyethylene composite bags was superior to polyethylene plastic bags or cowhide-coated paper bags. However, the stability of sealed raw products was better than vacuum-packed ones, whereas vacuum-packed salt-processed products exhibited greater stability than their sealed counterparts. ConclusionBased on the results of the quality changes of small packaged Alismatis Rhizoma decoction pieces under different storage conditions, it is recommended that the suitable storage packaging conditions for small packaged raw products are sealed packaging with aluminum foil polyethylene composite bags and controlled atmosphere storage, and the suitable storage and packaging conditions for small packaged salt-processed products are vacuum packaging with aluminum foil polyethylene composite bags and controlled atmosphere storage.
3.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
4.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
5.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
6.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
7.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
8.Clinical Efficacy of Tangning Tongluo Tablets for Nonproliferative Diabetic Retinopathy
Fuwen ZHANG ; Junguo DUAN ; Wen XIA ; Tiantian SUN ; Yuheng SHI ; Shicui MEI ; Xiangxia LUO ; Xing LI ; Yujie PAN ; Yong DENG ; Chuanlian RAN ; Hao CHEN ; Li PEI ; Shuyu YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):132-139
ObjectiveTo observe the clinical efficacy and safety of Tangning Tongluo tablets in the treatment of nonproliferative diabetic retinopathy (DR). MethodsFourteen research centers participated in this study, which spanned a time interval from September 2021 to May 2023. A total of 240 patients with nonproliferative DR were included and randomly assigned into an observation group (120 cases) and a control group (120 cases). The observation group was treated with Tangning Tongluo tablets, and the control group with calcium dobesilate capsules. Both groups were treated for 24 consecutive weeks. The vision, DR progression rate, retinal microhemangioma, hemorrhage area, exudation area, glycosylated hemoglobin (HbA1c) level, and TCM syndrome score were assessed before and after treatment, and the safety was observed. ResultsThe vision changed in both groups after treatment (P<0.05), and the observation group showed higher best corrected visual acuity (BCVA) than the control group (P<0.05). The DR progression was slow with similar rates in the two groups. The fundus hemorrhage area and exudation area did not change significantly after treatment in both groups, while the observation group outperformed the control group in reducing the fundus hemorrhage area and exudation area. There was no significant difference in the number of microhemangiomas between the two groups before treatment. After treatment, the number of microhemangiomas decreased in both the observation group (Z=-1.437, P<0.05) and the control group (Z=-2.238, P<0.05), and it showed no significant difference between the two groups. As the treatment time prolonged, the number of microhemangiomas gradually decreased in both groups. There was no significant difference in the HbA1c level between the two groups before treatment. After treatment, the decline in the HbA1c level showed no significant difference between the two groups. The TCM syndrome score did not have a statistically significant difference between the two groups before treatment. After treatment, neither the TCM syndrome score nor the response rate had significant difference between the two groups. With the extension of the treatment time, both groups showed amelioration of TCM syndrome compared with the baseline. ConclusionTangning Tongluo tablets are safe and effective in the treatment of nonproliferative DR, being capable of improving vision and reducing hemorrhage and exudation in the fundus.
9.In Vitro and in vivo Component Analysis of Total Phenolic Acids from Gei Herba and Its Effect on Promoting Acute Wound Healing and Inhibiting Scar Formation
Xixian KONG ; Guanghuan TIAN ; Tong WU ; Shaowei HU ; Jie ZHAO ; Fuzhu PAN ; Jingtong LIU ; Yong DENG ; Yi OUYANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):156-167
ObjectiveBased on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), to identify the in vivo and in vitro chemical components of total phenolic acids in Gei Herba(TPAGH), and to clarify the pharmacological effects and potential mechanisms of the effective part in promoting acute wound healing and inhibiting scar formation. MethodsUPLC-Q-Orbitrap-MS was used to identify the chemical components of TPAGH and ingredients absorbed in vivo after topical administration. A total of 120 ICR mice were randomly divided into the model group, recombinant human epidermal growth factor(rhEGF) group(4 mg·kg-1), and low, medium, and high dose groups of TPAGH(3.5, 7, 14 mg·kg-1), with 24 mice in each group. A full-thickness skin excision model was constructed, and each administration group was coated with the drug at the wound site, and the model group was treated with an equal volume of normal saline, the treatment was continued for 30 days, during which 8 mice from each group were sacrificed on days 6, 12, and 30. The healing of the wounds in the mice was observed, and histopathological changes in the skin tissues were dynamically observed by hematoxylin-eosin(HE), Masson, and Sirius red staining, and enzyme-linked immunosorbent assay(ELISA) was used to dynamically measure the contents of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), vascular endothelial growth factor A(VEGFA), matrix metalloproteinase(MMP)-3 and MMP-9 in skin tissues. Network pharmacology was used to predict the targets related to the promotion of acute wound healing and the inhibition of scar formation by TPAGH, and molecular docking of key components and targets was performed. Gene Ontology(GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out for the related targets, so as to construct a network diagram of herbal material-compound-target-pathway-pharmacological effect-disease for further exploring its potential mechanisms. ResultsA total of 146 compounds were identified in TPAGH, including 28 phenylpropanoids, 31 tannins, 23 triterpenes, 49 flavonoids, and 15 others, and 16 prototype components were found in the serum of mice. Pharmacodynamic results showed that, compared with the model group, the TPAGH groups showed a significant increase in relative wound healing rate and relative scar inhibition rate(P<0.05), and the number of new capillaries, number of fibroblasts, number of new skin appendages, epidermal regeneration rate, collagen deposition ratio, and Ⅲ/Ⅰ collagen ratio in the tissue were significantly improved(P<0.05, 0.01), the levels of IL-6, TNF-α, MMP-3 and MMP-9 in the skin tissues were reduced to different degrees, while the level of VEGFA was increased. Network pharmacology analysis screened 10 core targets, including tumor protein 53(TP53), sarcoma receptor coactivator(SRC), protein kinase B(Akt)1, signal transducer and activator of transcription 3(STAT3), epidermal growth factor receptor(EGFR) and so on, participating in 75 signaling pathways such as advanced glycation end-products(AGE)-receptor for AGE(AGE/RAGE) signaling pathway, phosphatidylinositol 3-kinase(PI3K)/Akt signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking confirmed that the key components genistein, geraniin, and casuariin had good binding ability to TP53, SRC, Akt1, STAT3 and EGFR. ConclusionThis study comprehensively reflects the chemical composition of TPAGH and the absorbed components after topical administration through UPLC-Q-Orbitrap-MS. TPAGH significantly regulates key indicators of skin healing and tissue reconstruction, thereby clarifying its role in promoting acute wound healing and inhibiting scar formation. By combining in vitro and in vivo component identification with network pharmacology, the study explores how key components may bind to targets such as TP53, Akt1 and EGFR, exerting therapeutic effects through related pathways such as immune inflammation and vascular regeneration.
10.Interpretation of Reporting Items for Practice Guidelines in Healthcare for Chinese Patent Medicines (RIGHT for CPM)
Liaoyao WANG ; Hejing PAN ; Le ZHANG ; Wenya WANG ; Xing LIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):211-218
The clinical practice guidelines for Chinese patent medicines (CPM) provide reference for the selection of national drug catalogs, the formulation of prescription collections in medical institutions, and the clinical use of CPM, constituting an important part of traditional Chinese medicine (TCM) guidelines. As a crucial part of Chinese drug supply guarantee system, CPM plays an important role in the treatment, prevention, and healthcare of many disease categories, whereas the application of CPM has problems of misuse and even abuse. To standardize the application of CPM, a research team at Zhejiang Chinese Medical University developed the Reporting Items for Practice Guidelines in Healthcare for Chinese Patent Medicines (RIGHT for CPM) based on the RIGHT checklist framework. The RIGHT for CPM checklist gathers key information from published CPM guidelines, existing TCM reporting checklists, and the RIGHT checklist and its extensions to form an initial pool of reporting items. Seventeen experts from different disciplines were invited to conduct two rounds of Delphi surveys, and the final checklist was reviewed and approved for publication by 18 leading experts in TCM research and guideline reporting from China and abroad. The RIGHT for CPM checklist adds 16 sub-items and revises 2 sub-items on the basis of the RIGHT checklist, highlighting the characteristics of CPM guideline reporting. It considers CPM selection and inclusion criteria, policy access, indications and symptoms, drug combination instructions, drug use in special populations, precautions, and recommendations of Western medical physicians, among others. This can further improve the quality and transparency of CPM guideline reporting, promote standardized reporting of CPM guidelines, and facilitate the rational clinical use of CPM. This article interprets the development process of the RIGHT for CPM checklist and the items that highlight the characteristics of CPM guidelines, with a view to promoting the application of the RIGHT for CPM checklist.

Result Analysis
Print
Save
E-mail