1.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Clinical analysis of metagenome next-generation sequencing for diagnosing invasive fungal disease in patients with early stage of hematopoietic stem cell transplantation
Yuhan JI ; Mingyue PAN ; Xiaoyu LAI ; Lizhen LIU ; Jimin SHI ; Yanmin ZHAO ; Jian YU ; Luxin YANG ; Yi LUO
Journal of Army Medical University 2024;46(4):311-318
Objective To analyze the clinical outcomes of early invasive fungal disease(IFD)in patients after allogenetic hematopoietic stem cell transplantation(allo-HCST)with metagenomic next-generation sequencing(mNGS).Methods A retrospective analysis was conducted on patients undergoing allo-HCST in our Bone Marrow Transplantation Center between July 2021 and October 2022.These patients experienced one of the following conditions within 100 d after transplantation:① Patients with persistent fever and negative blood culture after empiric antimicrobial therapy for 72 h or longer;② Hyperpyrexia of unknown origin occurred again after effective anti-infection in the past;③ Symptoms in lower respiratory tract associated with lung lesions on CT scan,and empiric anti-infective therapy was ineffective.Peripheral blood or bronchoscopic alveolar lavage fluid were tested with mNGS,and overall survival(OS)and non-relapse mortality(NRM)were analyzed.Results There were 60 patients enrolled in this study.For the peripheral blood samples of 47 cases and bronchoalveolar lavage fluid samples of 13 cases,mNGS found that 19 cases were negative to pathogens,30 cases were non-fungal positive,and 11 case were fungal positive,including 3 cases of aspergillus,5 cases of mucor,2 cases of Candida tropicalis,and 1 case of Trichosporon asahii.Of the 11 patients with fungal positive,8 achieved complete remission after antifungal therapy according to the mNGS results.The 1-year OS and NRM of the 60 patients were 70.0%(95%CI:64.1%~75.9%)and 20.0%(95%CI:11.9%~32.5%),respectively,while those of the fungal infection patients were 54.5%(95%CI:49.5%~69.5%)and 36.4%(95% CI:15.5%~70.3%),respectively.No significant differences were seen in 1-year OS(P=0.487)and 1-year NRM(P=0.358)among the negative,fungal infection and non-fungal infection patients,neither OS(P=0.238)and NRM(P=0.154)between the fungal infection and the non-fungal infection patients.Conclusion mNGS can rapidly diagnose the early IFD after allo-HSCT,which is helpful for timely and effective treatment and improves the prognosis of patients.
7.Regulatory mechanism of ferroptosis on pressure ulcers:bioinformatics analysis and experimental validation
Lulu TANG ; Xiaojia PAN ; Yingtao LAI ; Li WANG
Chinese Journal of Tissue Engineering Research 2024;28(35):5656-5661
BACKGROUND:Ferroptosis-mediated ischemia-reperfusion injury plays a crucial role in the occurrence and progression in pressure ulcers,and there may be pressure ulcer-associated ferroptosis biomarkers,but the mechanism has not been elucidated. OBJECTIVE:To investigate the molecular mechanisms underlying pressure ulcers using bioinformatic analysis,with a focus on identifying differentially expressed genes associated with ferroptosis during the process of pressure ulcer formation,thereby providing novel insights into the clinical treatment of pressure ulcers. METHODS:The single-cell transcriptome sequencing dataset and ferroptosis-related genes were obtained and preprocessed from the Gene Expression Omnibus(GEO)and FerrDb databases.We performed clustering and proportion analyses,metabolic activity and pseudotime analysis,cell communication analysis,ferroptosis gene set cell population identification,and enrichment analysis to determine differentially expressed genes related to ferroptosis.Animal experiments were then conducted for further validation,with 20 Sprague-Dawley rats randomly assigned into a control group and a model group(n=10 per group).The control group received no treatment,while the model group underwent a cycle of ischemia-reperfusion to establish pressure ulcer models.Changes in differentially expressed genes and proteins in the wound tissues of pressure ulcer rats were detected using fluorescent quantitative PCR and western blot,respectively. RESULTS AND CONCLUSION:The single-cell transcriptome sequencing data were clustered into six cell types,with a higher proportion of type 2 and type 3 keratinocytes observed in the pressure ulcer group.There was evident metabolic heterogeneity and evolutionary trajectory among cell populations.Type 2 and type 3 keratinocytes exhibited stronger cell communication,while type 2 keratinocytes demonstrating optimal ligand-receptor interactions.Type 2 keratinocytes demonstrated higher scores for ferroptosis,accompanied by significant upregulation or downregulation of specific genes.A total of 27 Gene Ontology enrichments,20 Kyoto Encyclopedia of Genes and Genomes enrichments,and 24 ferroptosis-related differentially expressed genes,including glutathione peroxidase 4(GPX4)and acyl-CoA synthetase long chain family member 4(ACSL4),were identified.Animal experiments further confirmed the downregulation of GPX4,the ferroptosis-inhibiting protein,and the upregulation of ACSL4,the ferroptosis-promoting protein,in the model group.Overall,these findings indicate the presence of ferroptosis in pressure ulcer tissue.GPX4 and ACSL4 are important genes regulating ferroptosis in pressure ulcer tissues.
8.Multicenter expert recommendations on interventional valve-in-valve technology for mitral bioprosthetic valve destruction in China
Haibo ZHANG ; Xiangbin PAN ; Yingqiang GUO ; Lai WEI ; Jian YANG ; Daxin ZHOU ; Yongjian WU ; Xu MENG ; Liming LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(08):1090-1095
Mitral valve replacement is one of the most common heart valve surgeries in China. In recent years, with the increase in degenerative valve diseases, older patients, and the progress of anti-calcification technology of biological valves, the proportion of mitral valve biological valve replacement has been increasing year by year. After the damage of traditional mitral valve biological valves, re-operation of valve replacement with thoracotomy is required. However, the adhesion between the heart and sternum, as well as the damage caused by cardiopulmonary bypass and cardiac arrest, can cause significant trauma to elderly patients and those with multiple organ dysfunction, leading to increased mortality and complication rates. In recent years, interventional valve surgery, especially transcatheter valve-in-valve surgery, has developed rapidly. This procedure can correct the damaged mitral valve function without stopping the heart, but there are still many differences between its technical process and conventional aortic valve replacement surgery. Therefore, organizing and writing multicenter expert recommendations on the technical process of transcatheter valve-in-valve surgery for damaged mitral valve biological valves is of great significance for the training and promotion of this technology.
9.The Genetic Polymorphism and Structural Analysis of 47 Microhaplotypes in a Jiangsu Changshu Chinese Han Population
Kun-Peng PAN ; Yao-Sen FENG ; Wen-Shuai YU ; Zong-Wei LIU ; Yi-Ren YAO ; Jie ZHAO ; Ke-Lai KANG ; Chi ZHANG ; Le WANG ; Jian WU
Progress in Biochemistry and Biophysics 2024;51(2):423-434
ObjectiveTo investigate the genetic polymorphism and structure of 47 autosomal microhaplotypes in the Han population in Changshu City, Jiangsu Province, and to evaluate the forensic efficiencies and forensic parameters. MethodsThe DNA library of unrelated individual samples was prepared according to MHSeqTyper47 kit manual and sequenced on the MiSeq FGx platform. Microhaplotype genotyping and sequencing depth statistics were processed using MHTyper. The genetic information of samples was then evaluated. The fixation index and genetic distance between the Jiangsu Changshu population and the reference populations in the 1000 Genomes Project phase 3 (1KG) were calculated, and forensic parameters were evaluated. ResultsThe fixation index and genetic distance between the Han population in Changshu, Jiangsu, and the CHB (Han Chinese in Beijing, China) reference population in 1KG were the lowest. The effective allele number (Ae) of each locus is also the closest between the two populations. The combined matching probability (CMP) of the Changshu Han population is close to the 5 populations of the East Asian reference super-population in 1KG, which is 1.25×10-36, and the combined probability of exclusion reached 0.999 999 999 964 1. ConclusionThis study reported the genetic polymorphism and allele frequency of 47 microhaplotypes in a Han population in Changshu City, Jiangsu Province. This information provides a data basis for 47 microhaplotypes in forensic applications. In addition, the polymorphism differences between the 1KG reference population and the Han population in Changshu, Jiangsu were compared, and the genetic structure of 47 microhaplotypes in the Han population in Changshu, Jiangsu was revealed. In general, the reference data of the East Asian super-population in 1KG is more in line with the genetic characteristics of Han population in Changshu, Jiangsu.
10.Genotype-phenotype analysis of Fabry disease caused by GLA gene variation in a pedigree
Zhuhui GE ; Zhihong LU ; Xiaodan PAN ; Tingting LAI ; Miaojuan YANG ; Huaqin YANG ; Huibin ZHANG ; Guangyin LI ; Zhangqiao DAI ; Jianhua MAO
Chinese Journal of Pediatrics 2024;62(4):345-350
Objective:To investigate the clinical phenotype and genetic characteristics of patients with Fabry disease caused by a GLA variant, IVS4+919G>A.Methods:It was a prospective study. Fabry disease screening was conducted among high-risk population in Ninghai from October 2021 to August 2023. Those children with decreased α-galactosidase enzyme activity<2.40 μmol/(L·h) or elavated Lyso-GL-3 level>1.10 μg/L in dried blood spot (DBS) method underwent GLA genetic testing for diagnosis confirmation. Meanwhile, family screening was carried out. A proband and his family members diagnosed with Fabry disease were research subjects. The clinical and genetic characteristics of patients with Fabry disease caused by the GLA variant (IVS4+919G>A) were analyzed.Results:The female proband aged 9.8 years with pain in both lower limbs as the initial symptom was found to have a heterozygous GLA variant IVS4+919G>A among 102 patients. In family screening, there were 4 family members (proband's father, elder sister, elder male cousin and elder female cousin) with Fabry disease and a family member (proband's fifth aunt) with a GLA variant. Among these 4 diagnosed family members, the elder male cousin of the proband, a boy aged 13.2 years had a heterozygous GLA variant, IVS4+919G>A with intermittent pain in both lower limbs as the initial symptom. The proband′s father had knee joint pain. The proband′s elder sister had decreased vision and his elder female cousin had no obvious symptoms. The proband′s fifth aunt with a GLA variant had decreased vision.Conclusions:High-risk screening in children and family screening are helpful for early diagnosis and treatment of Fabry disease. Neuropathic pain may be a early symptom in children with Fabry disease caused by the GLA variant, IVS4+919G>A.

Result Analysis
Print
Save
E-mail