1.Exosomal Pparα derived from cancer cells induces CD8 + T cell exhaustion in hepatocellular carcinoma through the miR-27b-3p /TOX axis.
Wenjun ZHONG ; Nianan LUO ; Yafeng CHEN ; Jiangbin LI ; Zhujun YANG ; Rui DONG
Chinese Medical Journal 2025;138(23):3139-3152
BACKGROUND:
Cluster of differentiation 8 positive (CD8 + ) T cells play a crucial role in the response against tumors, including hepatocellular carcinoma (HCC), where their dysfunction is commonly observed. While the association between elevated peroxisome proliferator-activated receptor alpha (PPARα) expression in HCC cells and exosomes and unfavorable prognosis in HCC patients is well-established, the underlying biological mechanisms by which PPARα induces CD8 + T cell exhaustion mediated by HCC exosomes remain poorly understood.
METHODS:
Bioinformatics analyses and dual-luciferase reporter assays were used to investigate the regulation of microRNA-27b-3p ( miR-27b-3p ) and thymocyte selection-associated high mobility group box ( Tox ) by Pparα . In vitro and in vivo experiments were conducted to validate the effects of HCC-derived exosomes, miR-27b-3p overexpression, and Pparα on T cell function. Exosome characterization was confirmed using transmission electron microscopy, Western blotting, and particle size analysis. Exosome tracing was performed using small animal in vivo imaging and confocal microscopy. The expression levels of miR-27b-3p , Pparα , and T cell exhaustion-related molecules ( Tox , Havcr2 , and Pdcd1 ) were detected using quantitative reverse transcription polymerase chain reaction analysis, Western blotting analysis, immunofluorescence staining, and flow cytometry analysis.
RESULTS:
Pparα expression was significantly increased in HCC and negatively correlated with prognosis. It showed a positive correlation with Tox and a negative correlation with miR-27b-3p . The overexpressed Pparα from HCC cells was delivered to CD8 + T cells via exosomes, which absorbed miR-27b-3p both in vitro and in vivo , acting as "miRNA sponges". Further experiments demonstrated that Pparα can inhibit the negative regulation of Tox mediated by miR-27b-3p through binding to its 3'untranslated regions.
CONCLUSIONS
HCC-derived exosomes deliver Pparα to T cells and promote CD8 + T cell exhaustion and malignant progression of HCC via the miR-27b-3p /TOX regulatory axis. The mechanisms underlying T-cell exhaustion in HCC can be utilized for the advancement of anticancer therapies.
MicroRNAs/metabolism*
;
PPAR alpha/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Humans
;
Liver Neoplasms/genetics*
;
CD8-Positive T-Lymphocytes/immunology*
;
Exosomes/metabolism*
;
Animals
;
Cell Line, Tumor
;
Mice
;
High Mobility Group Proteins/genetics*
;
Male
;
T-Cell Exhaustion
2.Jianpi Qinghua Formula improves metabolic-associated fatty liver disease by modulating PGC1α/PPARα/CPT1A pathway.
Yan-Yan XIAO ; Xu HAN ; Qing-Guang CHEN ; Jun-Fei XU ; Chi CHEN ; Fan GONG ; Hao LU
China Journal of Chinese Materia Medica 2025;50(9):2505-2514
Based on the regulation of mitochondrial fatty acid β-oxidation through the PGC1α/PPARα/CPT1A pathway, this study investigated the effect of Jianpi Qinghua Formula on the mitochondrial fatty acid β-oxidation pathway in the livers of mice with metabolic-associated fatty liver disease(MAFLD) induced by a high-fat diet. MAFLD mice were fed a high-fat diet to establish the model, and after successful modeling, the mice were divided into the model group, the Jianpi Qinghua Formula group, and the metformin group, with an additional control group. Each group was treated with the corresponding drug or an equivalent volume of saline via gavage. Body mass and food intake were measured regularly during the experiment. At the end of the experiment, blood lipid levels and liver function-related indices were measured, liver pathological changes were observed, and protein expression levels of PGC1α, PPARα, PPARγ, and CPT1A were detected by Western blot. The results showed that, with no difference in food intake, compared to the model group, the body mass of the Jianpi Qinghua Formula group and the metformin group was reduced, liver weight and liver index decreased, and levels of cholesterol, triglycerides, and low-density lipoprotein cholesterol(LDL-C) were lowered. Additionally, a decrease in alanine aminotransferase(ALT) and aspartate aminotransferase(AST) was observed. Hematoxylin and eosin(HE) staining revealed reduced pathological damage to hepatocytes, while oil red O staining showed improvement in fatty infiltration. The liver disease activity score decreased, and transmission electron microscopy revealed improvement in mitochondrial swelling and restoration of internal cristae. Western blot analysis indicated that Jianpi Qinghua Formula significantly increased the expression of PGC1α, PPARα, and CPT1A proteins in the liver and reduced the expression of PPARγ. These results suggest that the Jianpi Qinghua Formula improves mitochondrial function, promotes fatty acid oxidation, and alleviates the pathological changes of MAFLD. In conclusion, Jianpi Qinghua Formula can improve MAFLD by mediating mitochondrial fatty acid β-oxidation through the PGC1α/PPARα/CPT1A pathway.
Animals
;
PPAR alpha/genetics*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Carnitine O-Palmitoyltransferase/genetics*
;
Male
;
Liver/metabolism*
;
Fatty Liver/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Diet, High-Fat/adverse effects*
3.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
4.Molecular pathological mechanism of liver metabolic disorder in mice with severe spinal muscular atrophy.
Lihe LIU ; Mingrui ZHU ; Yifan WANG ; Bo WAN ; Zhi JIANG
Journal of Southern Medical University 2023;43(5):852-858
OBJECTIVE:
To explore the molecular pathological mechanism of liver metabolic disorder in severe spinal muscular atrophy (SMA).
METHODS:
The transgenic mice with type Ⅰ SMA (Smn-/- SMN20tg/2tg) and littermate control mice (Smn+/- SMN20tg/2tg) were observed for milk suckling behavior and body weight changes after birth. The mice with type Ⅰ SMA mice were given an intraperitoneal injection of 20% glucose solution or saline (15 μL/12 h), and their survival time was recorded. GO enrichment analysis was performed using the RNA-Seq data of the liver of type Ⅰ SMA and littermate control mice, and the results were verified using quantitative real-time PCR. Bisulfite sequencing was performed to examine CpG island methylation level in Fasn gene promoter region in the liver of the neonatal mice.
RESULTS:
The neonatal mice with type Ⅰ SMA showed normal milk suckling behavior but had lower body weight than the littermate control mice on the second day after birth. Intraperitoneal injection of glucose solution every 12 h significantly improved the median survival time of type Ⅰ SMA mice from 9±1.3 to 11± 1.5 days (P < 0.05). Analysis of the RNA-Seq data of the liver showed that the expression of the target genes of PPARα related to lipid metabolism and mitochondrial β oxidation were down-regulated in the liver of type Ⅰ SMA mice. Type Ⅰ SMA mice had higher methylation level of the Fasn promoter region in the liver than the littermate control mice (76.44% vs 58.67%). In primary cultures of hepatocytes from type Ⅰ SMA mice, treatment with 5-AzaC significantly up-regulated the expressions of the genes related to lipid metabolism by over 1 fold (P < 0.01).
CONCLUSION
Type Ⅰ SMA mice have liver metabolic disorder, and the down-regulation of the target genes of PPARα related to lipid and glucose metabolism due to persistent DNA methylation contributes to the progression of SMA.
Mice
;
Animals
;
PPAR alpha
;
Liver Diseases
;
Muscular Atrophy, Spinal/genetics*
;
Mice, Transgenic
;
Body Weight
;
Glucose
5.Effects and mechanism of knocking down lncRNA H19 to inhibit lipid accumulation in human THP-1 cells-derived macrophages.
Xuemei WANG ; Yue CHE ; Jieying WANG ; Ke MEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):884-890
Objective To investigate the effects of long noncoding RNA H19 on lipid accumulation of macrophages under high fat stress and its mechanism. Methods Human THP-1 cells-derived macrophages were incubated with ox-LDL, and the effects of H19 siRNA intervention on lipid accumulation was observed. The THP-1 cells were divided into control group (conventional culture), ox-LDL group, siRNA negative control (NC siRNA) combined with ox-LDL treatment group, and H19 siRNA combined with ox-LDL treatment group. Oil red O staining was used to determine the lipid accumulation in cells, and cholesterol concentration was analyzed by enzymatic method; ATP assay kit for detecting celluar ATP content; colorimetry was used to detect the levels of oxidative stress indicators and ELISA was used to detect the levels of monocyte chemoattractant protein-1 (MCP-1) in the cell supernatant. Western blot analysis was used to detect the protein expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear factor κB p-p65 (NF-κB p-p65). Results Knockdown H19 significantly inhibited intracellular lipid accumulation, decreased total cholesterol (TC) and cholesterol ester (CE) content, and decreased CE/TC ratio. Knockdown H19 significantly alleviated cell damage including an increase in ATP content, a decrease in oxidative stress levels and a decrease in MCP-1 levels, which caused by high-fat stress. H19 siRNA upregulated expression of ABCA1, PPARα and PGC-1α in THP-1 derived macrophages, downregulated NF-κB signal pathway. Conclusion Knockdown H19 upregulates PGC-1α expression in THP-1 cells and downregulates NF-κB pathway, which promotes cholesterol reverse transport, reduces inflammatory reaction and inhibits lipid accumulation.
Humans
;
Adenosine Triphosphate
;
Cholesterol
;
NF-kappa B
;
PPAR alpha
;
RNA, Long Noncoding/genetics*
;
RNA, Small Interfering/genetics*
;
THP-1 Cells
;
Macrophages/metabolism*
;
Lipid Metabolism
6.Anemoside B4 regulates fatty acid metabolism reprogramming in mice with colitis-associated cancer.
Xin YANG ; Jing JIA ; Xin-Xu XIE ; Meng-Qiang WAN ; Yu-Lin FENG ; Ying-Ying LUO ; Hui OUYANG ; Jun YU
China Journal of Chinese Materia Medica 2023;48(9):2325-2333
The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.
Mice
;
Animals
;
Sterol Regulatory Element Binding Protein 1
;
Colitis-Associated Neoplasms
;
PPAR alpha/genetics*
;
Colonic Neoplasms/genetics*
;
Colon
;
Azoxymethane
;
RNA, Messenger
;
Dextran Sulfate
;
Colitis/drug therapy*
;
Mice, Inbred C57BL
;
Disease Models, Animal
7.Overexpression of ATF3 inhibits the differentiation of goat intramuscular preadipocytes.
Chongyang WANG ; Cheng LUO ; Hao ZHANG ; Xin LI ; Yanyan LI ; Yan XIONG ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2022;38(8):2939-2947
The aim of this study was to investigate the effect of activating transcription factor 3 (ATF3) on the differentiation of intramuscular preadipocytes in goat, and to elucidate its possible action pathway at the molecular level. In this study, the recombinant plasmid of goat pEGFP-N1-ATF3 was constructed, and the intramuscular preadipocytes were transfected with liposomes. The relative expression levels of adipocyte differentiation marker genes were detected by quantitative real-time PCR (qRT-PCR). After transfection of goat intramuscular preadipocytes with the goat pEGFP-N1-ATF3 overexpression vector, it was found that the accumulation of lipid droplets was inhibited, and the adipocyte differentiation markers PPARγ, C/EBPα and SREBP1 were extremely significantly down-regulated (P < 0.01), while C/EBPβ and AP2 were significantly down-regulated (P < 0.05). The ATF3 binding sites were predicted to exist in the promoter regions of PPARγ, C/EBPα and AP2 by the ALGGEN PROMO program. The overexpression of goat ATF3 inhibits the accumulation of lipid droplets in intramuscular preadipocytes, and this effect may be achieved by down-regulating PPARγ, C/EBPα and AP2. These results may facilitate elucidation of the regulatory mechanism of ATF3 in regulating the differentiation of goat intramuscular preadipocytes.
3T3-L1 Cells
;
Activating Transcription Factor 3/pharmacology*
;
Adipocytes
;
Adipogenesis/genetics*
;
Animals
;
CCAAT-Enhancer-Binding Protein-alpha/pharmacology*
;
Cell Differentiation
;
Goats
;
Mice
;
PPAR gamma/metabolism*
8.Di(2-ethylhexyl) phthalate-induced toxicity and peroxisome proliferator-activated receptor alpha: a review.
Yuki ITO ; Michihiro KAMIJIMA ; Tamie NAKAJIMA
Environmental Health and Preventive Medicine 2019;24(1):47-47
The plasticizer di(2-ethylhexyl) phthalate (DEHP) has been widely used in the manufacture of polyvinyl chloride-containing products such as medical and consumer goods. Humans can easily be exposed to it because DEHP is ubiquitous in the environment. Recent research on the adverse effects of DEHP has focused on reproductive and developmental toxicity in rodents and/or humans. DEHP is a representative of the peroxisome proliferators. Therefore, peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways are the expected mode of action of several kinds of DEHP-induced toxicities. In this review, we summarize DEHP kinetics and its mechanisms of carcinogenicity and reproductive and developmental toxicity in relation to PPARα. Additionally, we give an overview of the impacts of science policy on exposure sources.
Animals
;
Diethylhexyl Phthalate
;
toxicity
;
Environmental Pollutants
;
toxicity
;
Haplorhini
;
Humans
;
Mice
;
PPAR alpha
;
genetics
;
metabolism
;
Plasticizers
;
toxicity
;
Rats
9.Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes.
Yunk-Yung HAN ; Mi-Young SONG ; Min-Sub HWANG ; Ji-Hye HWANG ; Yong-Ki PARK ; Hyo-Won JUNG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(9):671-676
Obesity is associated with a number of metabolic abnormalities such as type 2 diabetes and has become a major health problem worldwide. In the present study, we investigated the effects of Epimedium koreanum Nakai (Herba Epimedii, HE) and its main constituent icariin on the adipocyte differentiation in 3T3-L1 preadipocytes. HE extract and icariin significantly reduced lipid accumulation and suppressed the expressions of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. They also inhibited fatty acid synthase (FAS), acyl-Co A synthase (ACS1), and perilipin. Moreover, HE extract and icariin markedly increased the phosphorylation of AMPK. These results indicated that HE extract and icariin can inhibit the adipocyte differentiation through downregulation of the adipogenic transcription factors, suggesting that HE containing icariin may be used as a potential therapeutic agent in the treatment and prevention of obesity.
3T3-L1 Cells
;
Adipocytes
;
cytology
;
drug effects
;
metabolism
;
Adipogenesis
;
drug effects
;
Animals
;
CCAAT-Enhancer-Binding Protein-alpha
;
genetics
;
metabolism
;
Epimedium
;
chemistry
;
Flavonoids
;
pharmacology
;
Lipid Metabolism
;
drug effects
;
Mice
;
PPAR gamma
;
genetics
;
metabolism
;
Plant Extracts
;
pharmacology
;
Sterol Regulatory Element Binding Protein 1
;
genetics
;
metabolism
10.Limb remote ischemic preconditioning attenuates liver ischemia reperfusion injury by activating autophagy via modulating PPAR-γ pathway.
Wei RUAN ; Qing LIU ; Chan CHEN ; Suobei LI ; Junmei XU
Journal of Central South University(Medical Sciences) 2016;41(9):918-928
OBJECTIVE:
To investigate the effect of limb remote ischemic preconditioning (RIPC) on hepatic ischemia/reperfusion (IR) injury and the underlying mechanisms.
METHODS:
Rats were subjected to partial hepatic IR (60 min ischemia followed by 24 hours reperfusion) with or without RIPC, which was achieved by 3 cycles of 10 min-occlusion and 10 min-
reperfusion at the bilateral femoral arteries interval 30 min before ischemia. Some rats were treated with a new PPAR-γ inhibitor, T0070907, before RIPC.
RESULTS:
At the end of reperfusion, liver injury was significantly increased (increases in Suzike's injury score, AST and ALT release), concomitant with elevated oxidative stress (increases in MDA formation, MPO activity, as well as the decrease in SOD activity) and inflammation (increases in TNF-α and IL-6 levels, decrease in IL-10 content). RIPC improved liver function and reduced histologic damage, accompanied by the increased PPAR-γ activation and autophagosome formation as well as the reduced autophagosome clearance. The beneficial effects of RIPC were markedly attenuated by T0070907, an inhibitor of PPAR-γ.
CONCLUSION
RIPC exerts the protective effects on liver by activation of autophagy via PPAR-γ.
Animals
;
Autophagy
;
drug effects
;
genetics
;
physiology
;
Extremities
;
Interleukin-10
;
metabolism
;
Interleukin-6
;
metabolism
;
Ischemia
;
Ischemic Preconditioning
;
methods
;
Liver
;
injuries
;
Liver Diseases
;
prevention & control
;
Oxidative Stress
;
drug effects
;
PPAR gamma
;
antagonists & inhibitors
;
Rats
;
Reperfusion Injury
;
prevention & control
;
Tumor Necrosis Factor-alpha
;
metabolism

Result Analysis
Print
Save
E-mail