1.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
2.Effects of p38 phosphorylation on stemness maintenance and chemotherapy drug resistance of PANC-1 cells.
Xueying SHI ; Jinbo YU ; Shihai YANG ; Jin ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):116-124
Objective The aim of this study was to investigate the effect of p38 on stem cell maintenance of pancreatic cancer. Methods Human pancreatic cancer cells PANC-1 were treated with different concentrations of 5-fluorouracil(5-FU)(0.5×IC50, IC50, and 2×IC50) for 24 hours, and VX-702 (p38 phosphorylation inhibitor) was added, and the cells were inoculated in 6-well culture dishes with ultra-low adhesion to observe the changes of sphere tumors. The expression levels of cyclin-dependent kinase 2(CDK2), cyclin B1 and D1, Octamer-binding transcription factor 4(OCT4), SRY-box transcription factor 2(SOX2), Nanog and p38 were measured by Western blot. The mRNA expression levels of p38, OCT4, Nanog and SOX2 were tested by RT-PCR. Cell cycle, apoptosis, and the proportion of CD44+CD133+PANC-1 cells were evaluated by flow cytometry. Results The results showed that 5-FU inhibited the formation of tumor spheres in PANC-1 cells, increased CD44+CD133+cell fragments, down-regulated the expression of OCT4, Nanog and SOX2, and inhibited the stemness maintenance of PANC-1 tumor stem cells. Phosphorylation of PANC-1 cells was inhibited by a highly selective p38 MAPK inhibitor, VX-702(p38 mitogen-activated protein kinase inhibitor), which had the same effect as 5-FU treatment. When VX-702 combined with 5-FU was used to treat PANC-1 cells, the therapeutic effect was enhanced. Conclusion p38 inhibitors decreased PANC-1 cell activity and increased cell apoptosis. p38 inhibitors inhibit the stemness maintenance of pancreatic cancer stem cells.
Humans
;
Phosphorylation/drug effects*
;
Cell Line, Tumor
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors*
;
Neoplastic Stem Cells/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Fluorouracil/pharmacology*
;
Pancreatic Neoplasms/pathology*
;
Apoptosis/drug effects*
;
SOXB1 Transcription Factors/genetics*
;
Octamer Transcription Factor-3/genetics*
3.SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation.
Stefania MILITI ; Reshma NIBHANI ; Martin POOK ; Siim PAUKLIN
Protein & Cell 2025;16(4):260-285
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Humans
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
;
Cell Differentiation
;
Pluripotent Stem Cells/metabolism*
;
Signal Transduction
;
Octamer Transcription Factor-3/genetics*
;
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Nanog Homeobox Protein/genetics*
;
Phosphorylation
4.Effect of OCT4 Gene Expression Upregulation on the Expression of iPSC-related Transcription Factors in Human Bone Marrow Derived Mesenchymal Stem Cells.
Journal of Experimental Hematology 2020;28(4):1086-1095
OBJECTIVE:
To explore the effect of OCT4 over-expression on the expression of induced pluripotent stem cell (iPSC)-related transcription factors (cMYC,KLF4,LIN28,NANOG and SOX2) in human bone marrow derived mesenchymal stem cells (hBMMSCs), so as to provide fundamental basis for exploring the pathogenesis of hematological diseases (leukemia, aplastic anemia, etc.) from the perspective of hemopoietic microenvironment in the future.
METHODS:
Recombinant plasmid pcDNA3.1-OCT4 was constructed and transferred into the optimal generation P3-4 hBMMSCs by liposome transfection. The cells with stable and high expression of OCT4(hBMMSCs-OCT4)were screened by G418 resistance screening (limited dilution) and subcloning, the expression of OCT4 mRNA and OCT4 protein was verified by RT-PCR and FCM, respectively. The expression of iPSC-related transcription factors (cMYC, KLF4, LIN28, NANOG and SOX2) were also determined by FCM and RT-PCR, so as to evaluate the effect of ectopic high expression of OCT4 on the expression of iPSC related transcription factors in hBMMSCs.
RESULTS:
Recombinant plasmid pcDNA3.1-OCT4 was successfully constructed and cells with stable and high expression of OCT4 were successfully screened from hBMMSCs by limited dilution and subcloning. The result of flow cytometry showed that the mean expression level of OCT4 protein increased from (3.03±1.49)% to (95.46±1.40)% compared with the untransfected parental MSCs, which was also confirmed by RT-PCR analysis. At the same time, the expression levels of OCT4 protein and mRNA were compared between transient transfection (day 4) and stable expression cells (day 96), respectively, it was showed that the OCT4 protein level increased from (36.36±0.28)% at day 4 to (96.25±1.38)% at day 96, and the OCT4 mRNA level increased from 2.75-folds to 6.23-folds, respectively. Compared with the untransfected parental MSCs, the average expression levels of stemness transcription factors increased from (1.12±0.47)% (cMYC), (0.84±0.30)% (KLF4), (2.14±0.79)% (LIN28), (0.63±0.37)% (NANOG) and (14.34±2.44)% (SOX2) to (80.65±4.75)%, (73.03±4.70)%, (68.08±3.05)%, (39.39±1.85)%and (91.45±4.56)% in hBMMSCs-OCT4, respectively, which were consistent with results of RT-PCR analysis. Moreover, the expression levels of NANOG and SOX2 positively correlated with the mean expression of OCT4 (OCT4 vs NANOG: r=0.7802,OCT4 vs SOX2: r=0.4981;NANOG vs SOX2: r=0.7426).
CONCLUSION
Cells with stable and high expression of OCT4 have been successfully established from hBMMSCs. Ectopic high expression of transcription factor OCT4 in hBMMSCs can up-regulate the expression of other iPSC-related transcription factors such as cMYC, KLF4, LIN28, NANOG and SOX2.
Bone Marrow
;
Humans
;
Induced Pluripotent Stem Cells
;
Mesenchymal Stem Cells
;
Nanog Homeobox Protein
;
genetics
;
Octamer Transcription Factor-3
;
genetics
;
Transcription Factors
;
Up-Regulation
5.Clinical and genetic characteristics of a young child with combined pituitary hormone deficiency type I caused by POU1F1 gene variation.
Jie CHEN ; Xing-Xing ZHANG ; Xiao-Chuan WU ; Jian LI
Chinese Journal of Contemporary Pediatrics 2019;21(7):685-689
This paper reports the clinical and genetic characteristics of a case of combined pituitary hormone deficiency type I (CPHD1) caused by POU domain, class 1, transcription factor 1 (POU1F1) gene variation. A 2 years and 3 months old girl mainly presented with short stature, special facial features of prominent forehead, enophthalmos, and short mandible, loose skin, central hypothyroidism, complete growth hormone deficiency, and anterior pituitary hypoplasia. Gene analysis identified a novel heterozygous mutation, c.889C>T (p.R297W), in POU1F1 gene, and this locus of her parents was wild-type. This mutation was analyzed as a possible pathogenic variant according to the guidelines of the American College of Medical Genetics and Genomics, which has not been previously reported in the literature and conforms to the autosomal dominant inheritance. This child was diagnosed with CPHD1. Her height increased by 19.8 cm and showed a catch-up growth trend after one year of combined treatment with growth hormone and euthyrox. This study enriches the mutation spectrum of POU1F1 gene and has important significance for the diagnosis and classification of combined pituitary hormone deficiency.
Child, Preschool
;
Female
;
Humans
;
Hypopituitarism
;
Mutation
;
Transcription Factor Pit-1
;
Transcription Factors
6.Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice.
Jiao XU ; Xiu-Ping CAO ; Zi-Juan TANG ; Jian HUANG ; Yue-Hui ZHENG ; Jia LI
Acta Physiologica Sinica 2019;71(3):405-414
The present study was aimed to investigate the expression relationship of Hippo signaling molecules and ovarian germline stem cell (OGSC) markers in the development schedule of OGSCs during ovarian aging in women and mice. The ovaries of 2-month-old mature (normal control) and 12-month-old (physiological ovarian aging) KM mice were sampled, and the ovarian cortex samples of young (postpuberty to 35 years old), middle age (36-50 years old) and menopausal period (51-60 years old) women were obtained with consent. The mice model of pathological ovarian aging was established by intraperitoneal injection of cyclophosphamide/busulfan (CY/BUS). HE staining was used to detect the changes of follicles at different stages, and the localization and expression changes of Hippo signaling molecules and OGSCs related factors (MVH/OCT4) were detected by immunohistochemistry and immunofluorescence staining. Western blot was used to detect the protein expression levels of the major molecules in the Hippo signaling pathway and OGSCs related factors. The results showed that there were not any normal follicles, but a few atresia follicles in the ovaries from physiological and pathological ovarian aging mice. Compared with the normal control mice, both the physiological and pathological ovarian aging mice showed decreased protein expression levels of the main Hippo signaling molecules (pYAP1) and MVH/OCT4; Whereas only the pathological ovarian aging mice showed increased ratio of pYAP1/YAP1. In comparison with the young women, the middle age and menopausal women showed looser structure of ovarian surface epithelium (OSE) and less ovarian cortical cells. The protein expression level of LATS2 in the OSE was the highest in young women, MST1 expression was the lowest in the menopausal period women, and the expression levels of YAP1 and pYAP1 were the highest in middle age women. Compared with the young women, the middle age and menopausal period women exhibited significantly decreased ratio of OSE pYAP1/YAP1, whereas there was no significant difference between them. The expression level of MVH protein in OSE from the young women was significantly higher than those of the middle age and menopausal period women. These results indicate that there is an expression relationship between the main molecules of Hippo signaling pathway and OGSCs related factors, which suggests that Hippo signaling pathway may regulate the expression levels of OGSCs related factors, thus participating in the process of physiological and pathological degeneration of ovarian.
Adaptor Proteins, Signal Transducing
;
metabolism
;
Adult
;
Aging
;
Animals
;
Epithelium
;
Female
;
Humans
;
Mice
;
Middle Aged
;
Octamer Transcription Factor-3
;
metabolism
;
Oogonial Stem Cells
;
metabolism
;
Ovarian Follicle
;
Ovary
;
Phosphoproteins
;
metabolism
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
Tumor Suppressor Proteins
;
metabolism
7.Correlation of Cancer Stem-Cell Markers OCT4, SOX2, and NANOG with Clinicopathological Features and Prognosis in Operative Patients with Rectal Cancer
Liuping YOU ; Xin GUO ; Yuenan HUANG
Yonsei Medical Journal 2018;59(1):35-42
PURPOSE: To investigate the association of cancer stem-cell markers [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box 2 (SOX2), and Nanog homebox (NANOG)] expression with clinicopathological properties and overall survival (OS) in operative rectal cancer (RC) patients receiving adjuvant therapy. MATERIALS AND METHODS: 153 patients with primary RC receiving surgery were enrolled. Tumor tissue and paired adjacent normal tissue sample were collected, and OCT4, SOX2, and NANOG expressions were assessed by immunofluorescent staining. The median follow-up duration was 5.2 years, and the last follow-up date was August 2016. RESULTS: Tumor tissue OCT4 (p < 0.001), SOX2 (p=0.003), and NANOG (p < 0.001) expressions were higher than those in adjacent tissue. OCT4 expression was positively correlated with pathological grade (R=0.185, p=0.022), tumor size (R=0.224, p=0.005), and N stage (R=0.170, p=0.036). NANOG expression was positively associated with tumor size (R=0.169, p=0.036). Kaplan-Meier suggested that OCT4+ was associated with worse OS compared with OCT4− (p < 0.001), while no association of SOX2 (p=0.121) and NANOG expressions (p=0.195) with OS was uncovered. Compared with one or no positive marker, at least two positive markers were associated with shorter OS (p < 0.001), while all three positive markers were correlated with worse OS compared with two or less positive markers (p < 0.001). Multivariate Cox's analysis revealed that OCT4+ (p < 0.001) and N stage (p=0.046) were independent factors for shorter OS. CONCLUSION: Tumor tissue OCT4 expression was correlated with poor differentiation, tumor size, and N stage, and it can serve as an independent prognostic biomarker in operative patients with RC receiving adjuvant therapy.
Aged
;
Biomarkers, Tumor/metabolism
;
Female
;
Humans
;
Male
;
Multivariate Analysis
;
Nanog Homeobox Protein/metabolism
;
Neoplastic Stem Cells/metabolism
;
Octamer Transcription Factor-3/metabolism
;
Prognosis
;
Rectal Neoplasms/metabolism
;
Rectal Neoplasms/pathology
;
Rectal Neoplasms/surgery
;
SOXB1 Transcription Factors/metabolism
;
Survival Analysis
8.Effect of OCT4A Gene on the Biological Characteristics of K562 Cells.
Fan-Jing MENG ; Jiang CAO ; Chong CHEN ; Qing-Yun WU ; Xu-Guang SONG ; Wei CHEN ; Kai-Lin XU ; Wan-Chuan ZHUANG
Journal of Experimental Hematology 2018;26(2):330-335
OBJECTIVETo evaluate biological effects of OCT4A gene on K562 cells and explore the molecular mechanism of K562 cell apoptosis.
METHODSTwo recombinant lentiviral vectors were constructed, which could stablely up- regulate and down- regulate OCT4A protein. Recombinant lentivirus was generated by co-transfection of three-plasmids and transfec-ted into K562 cells. The experiments were divided into 5 groups: normal, pLVX-OCT4A-ZsGreen1, pLVX vector control, PLB-OCT4A shRNA and non-specific shRNA groups. Western blot was applied to detect the expression of OCT4A protein, the cell counting kit-8 was applied to evaluate the effect of OCT4A on proliferation of K562 cells. The apoptosis and differentiation of K562 cells were detected by flow cytometry with AnnexinV/7-AAD double staining. The mRNA expressions of caspase-3,BIM,BCL-xL,BAX in K562 cells were determined by real time PCR.
RESULTSThe OCT4A fragment was amplified by reverse transcription polymerase chain reaction(RT-PCR), the 2 lentiviral vectors were successfully constructed. In comparson with those in the control group, the expression of OCT4A protein of pLVX-OCT4A-ZsGreen1 group was significantly increased, but decreased in PLB-OCT4A shRNA group. CCK-8 assay showed that the higher the content of OCT4A protein, the faster the cell proliferation. The apoptosis rate was (3.48±0.52)% of pLVX-OCT4A-ZsGreen1 group, which was lower than that of control group, while the apoptosis rate PLB-OCT4A shRNA group was (7.25±0.57)%, which was higher than that of control group (P<0.05), however, the K562 cells differentiation was not influenced(P>0.05). Compared with control group, the gene expression of Caspase-3,BIM and BAX was down-regulated(P>0.05), but a significant up-regulation of BCL-xL gene expression was observed(P<0.05).
CONCLUSIONTwo lentiviral vectors have been successfully constructed, which can stably up- and down- regulate the expression of OCT4A in K562 cells respectively. OCT4A can promote the K562 cell proliferation and inhibit the apoptosis, the mechanism may be related with up-regulation of BCL-xl expression.
Apoptosis ; Cell Proliferation ; Genetic Vectors ; Humans ; K562 Cells ; Lentivirus ; Octamer Transcription Factor-3 ; genetics ; Transfection
9.AMutation Causes Nonsyndromic Hearing Loss in a Chinese X-linked Recessive Family.
Wan DU ; Ming-Kun HAN ; Da-Yong WANG ; Bing HAN ; Liang ZONG ; Lan LAN ; Ju YANG ; Qi SHEN ; Lin-Yi XIE ; Lan YU ; Jing GUAN ; Qiu-Ju WANG
Chinese Medical Journal 2017;130(1):88-92
BACKGROUNDThe molecular genetic research showed the association between X-linked hearing loss and mutations in POU3F4. This research aimed to identify a POU3F4 mutation in a nonsyndromic X-linked recessive hearing loss family.
METHODSA series of clinical evaluations including medical history, otologic examinations, family history, audiologic testing, and a high-resolution computed tomography scan were performed for each patient. Bidirectional sequencing was carried out for all polymerase chain reaction products of the samples. Moreover, 834 controls with normal hearing were also tested.
RESULTSThe pedigree showed X-linkage recessive inheritance pattern, and pathogenic mutation (c.499C>T) was identified in the proband and his family member, which led to a premature termination prior to the entire POU domains. This mutation co-segregated with hearing loss in this family. No mutation of POU3F4 gene was found in 834 controls.
CONCLUSIONSA nonsense mutation is identified in a family displaying the pedigree consistent with X-linked recessive pattern in POU3F4 gene. In addition, we may provide molecular diagnosis and genetic counseling for this family.
Asian Continental Ancestry Group ; Child ; Deafness ; genetics ; Female ; Genetic Predisposition to Disease ; Hearing Loss ; genetics ; Humans ; Male ; Mutation ; genetics ; POU Domain Factors ; genetics ; Pedigree
10.Increased PIT1 and PIT2 Expression in Streptozotocin (STZ)-induced Diabetic Mice Contributes to Uptake of iAs(V).
Sha Li YU ; Ling Fei XU ; Jun Xia WU ; Chen Juan YAO ; Qiao Yun HU ; Chun Xue ZHANG ; Xin Yuan ZHAO ; Hai Yan WEI ; Xiao Ke WANG ; Gang CHEN
Biomedical and Environmental Sciences 2017;30(11):792-801
OBJECTIVEThis study aimed to investigate the susceptibility of mice with streptozotocin(STZ)-induced diabetes mellitus (TIDM) to the uptake of pentavalent inorganic arsenic (iAsV) and the possible molecular mechanism.
METHODSTIDM was induced in mice by STZ. TIDM and normal mice were treated with 15.0 mg/kg Na2HAsO4·12H2O by intragastric administration. Then, the concentrations of arsenic in various tissues were measured by atomic fluorescence spectrometry. The gene expression levels of Pit1 and Pit2 were quantified by real-time RT-PCR, and their protein levels were detected by Western blotting in mouse heart, kidney, and liver tissues.
RESULTSThe concentrations of arsenic in STZ-induced TIDM mouse tissues were higher at 2 h after intragastric administration of Na2HAsO4·12H2O. Compared with the levels in normal mice, PIT1 and PIT2, which play a role in the uptake of iAsV, were upregulated in the livers and hearts of TIDM mice. PIT1 but not PIT2 was higher in TIDM mouse kidneys. The upregulation of Pit1 and Pit2 expression could be reversed by insulin treatment.
CONCLUSIONThe increased uptake of iAsV in TIDM mouse tissues may be associated with increased PIT1 and/or PIT2 expression.
Animals ; Arsenic ; pharmacokinetics ; Diabetes Mellitus, Experimental ; metabolism ; Environmental Pollutants ; pharmacokinetics ; Gene Expression Regulation ; physiology ; Male ; Mice ; Mice, Inbred ICR ; Sodium-Phosphate Cotransporter Proteins, Type III ; genetics ; metabolism ; Transcription Factor Pit-1 ; genetics ; metabolism

Result Analysis
Print
Save
E-mail