1.Brain invasion of bovine coronavirus: Virology molecular analysis of bovine coronavirus infection in calves with severe pneumonia and neurological signs
Semaha Gul YILMAZ ; Ozge AYDIN ; Hasan Emre TALI ; Gizem KARADAG ; Kivilcim SONMEZ ; Erhan BAYRAKTAR ; Aysun YILMAZ ; Nuri TURAN ; Zihni MUTLU ; Munir IQBAL ; Jurgen A. RICHT ; Huseyin YILMAZ
Journal of Veterinary Science 2024;25(4):e45-
Objective:
This study conducted virological investigations of calves showing diarrhea and respiratory and neurological signs.
Methods:
An outbreak of diarrhea, respiratory, and neurological disorders occurred among the 12 calves in July 2022 in Istanbul, Türkiye. Two of these calves exhibited neurological signs and died a few days after the appearance of symptoms. One of these calves was necropsied and analyzed using molecular and histopathological tests.
Results:
BCoV RNA was detected in the brain, lung, spleen, liver, and intestine of the calf that had neurological signs by real-time reverse transcription polymerase chain reaction.Immunostaining was also observed in the intestine and brain. A 622 bp S1 gene product was noted on gel electrophoresis only in the brain. Phylogenetic analysis indicated that the BCoV detected in this study had a high proximity to the BCoV strain GIb with 99.19% nucleotide sequence homology to the strains detected in Poland, Israel, Türkiye, and France. No distinct genetic lineages were observed when the brain isolate was compared with the respiratory and enteric strains reported to GenBank. In addition, the highest identity (98,72%) was obtained with the HECV 4408 and L07748 strains of human coronaviruses.
Conclusions
and Relevance: The strain detected in a calf brain belongs to the GIb-European lineage and shares high sequence homology with BCoV strains detected in Europe and Israel. In addition, the similarity between the human coronaviruses (4408 and L07748) raises questions about the zoonotic potential of the strains detected in this study.
2.Assessing the efficacy of a novel sperm-washing medium enriched with serotonin, L-carnitine, and coenzyme Q10: an observational cohort study.
Sinem DOGAN ; Turgut AYDIN ; Nadiye KOROGLU ; Yasemin YILMAZER ; Nazli ALBAYRAK ; Fadime CETIN ; Elnaz MOSHFEGHI ; Ozge CELIK
Asian Journal of Andrology 2024;26(6):635-639
This observational cohort study investigated the potential of a novel sperm-washing medium (SWM) enriched with serotonin (5-HT), L-carnitine (L-C), and coenzyme Q10 (CoQ10) to enhance sperm motility and reduce DNA damage. It compared this innovative medium (5-HT/L-C/CoQ10 SWM) with two widely used commercial media (SWM 1 and SWM 2). Ninety-eight volunteers from an infertility clinic provided semen samples, which were divided into three aliquots for analysis in different SWMs: group 1, SWM was composed of hydroxyethyl piperazineethanesulfonic acid (HEPES), sodium bicarbonate, human serum albumin (HSA), taurine, and gentamicin sulfate (SWM 1); group 2, SWM was composed of HEPES, sodium bicarbonate, and HSA (SWM 2); and group 3, SWM was composed of HEPES-buffered human tubal fluid supplemented with 5-HT, L-C, and CoQ10 (5-HT/L-C/CoQ10 SWM). Sperm motility was categorized as progressive, nonprogressive, or immotile. Apoptosis, reactive oxygen species (ROS) production, and DNA fragmentation were also assessed. There were no significant differences in total or progressive sperm motility among the groups. Spermatozoa in group 3 exhibited reduced apoptosis, necrosis, and ROS levels and increased viability. No significant differences were observed in the DNA fragmentation index among groups. The 5-HT/L-C/CoQ10 SWM reduced sperm oxidative stress and apoptosis compared with those of the two commercially available SWMs, suggesting that 5-HT/L-C/CoQ10 SWM could be useful for enhancing in vitro fertilization success rates.
Humans
;
Male
;
Serotonin
;
Carnitine/pharmacology*
;
Ubiquinone/pharmacology*
;
Sperm Motility/drug effects*
;
Adult
;
Spermatozoa/drug effects*
;
Cohort Studies
;
Reactive Oxygen Species/metabolism*
;
Culture Media
;
DNA Fragmentation/drug effects*
;
Apoptosis/drug effects*
;
DNA Damage/drug effects*
3.Clinical, virological, imaging and pathological findings in a SARS CoV-2antibody positive cat
Kursat OZER ; Aysun YILMAZ ; Mariano CAROSSINO ; Gulay Yuzbasioglu OZTURK ; Ozge Erdogan BAMAC ; Hasan E. TALI ; Egemen MAHZUNLAR ; Utku Y. CIZMECIGIL ; Ozge AYDIN ; Hamid B. TALI ; Semaha G. YILMAZ ; Zihni MUTLU ; Ayse Ilgın KEKEC ; Nuri TURAN ; Aydin GUREL ; Udeni BALASURIYA ; Munir IQBAL ; Juergen A. RICHT ; Huseyin YILMAZ
Journal of Veterinary Science 2022;23(4):e52-
This paper reports a presumptive severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) infection in a cat. A cat with respiratory disease living with three individuals with coronavirus disease 2019 showed bilateral ground-glass opacities in the lung on X-ray and computed tomography. The clinical swabs were negative for SARS-CoV-2 RNA, but the serum was positive for SARS-CoV-2 antibodies. Interstitial pneumonia and prominent type 2 pneumocyte hyperplasia were noted on histopathology. Respiratory tissues were negative for SARS-CoV-2 RNA or antigen, but the cat was positive for feline parvovirus DNA. In conclusion, the respiratory disease and associated pathology in this cat could have been due to exposure to SARS-CoV-2.

Result Analysis
Print
Save
E-mail